

`nowa' metoda obrazowania w diagnostyce medycznej

Janusz Braziewicz Instytut Fizyki AŚ Zakład Metod Fizycznych ŚCO

 zdrowie pacjenta i koszty medyczne są bezpośrednio związane z szybką i precyzyjną diagnozą

 konieczność obrazowania narządów i procesów zachodzących w ciele człowieka stosowane powszechnie techniki (x-ray, USG, CT, NMR) -nieinwazyjne techniki obrazowania anatomii i struktury ciała

256

widoczne zmiany wywołane są określonym typem schorzenia

Arteriografia

 zmiana procesów biochemicznych jest zwykle dużo wcześniejsza niż zmiany anatomiczne

podstawowa 'filozofia'

SPECT - PET

techniki obrazowania podstawowych procesów biochemicznych zachodzących w ciele i ich zmiany pod wpływem różnych czynników

PET, tak jak tradycyjna Medycyna Nuklearna jest metodą obrazowania funkcjonalnego

PET - komórki nowotworowe widoczne w wyniku zwiększonego metabolizmu

SPECT - obraz mózgu człowieka

PET technika posiadająca istotną przewagę nad 'tradycyjnymi'

nowotwór języka w obrazie FDG-PET

negatywny obraz MRI

Źródło: Serie wykładów n.t. PET, I. Buvat, INSERM Paris

Reakcje produkcji i rozpadu

Prawo rozpadu promieniotwórczego

Liczba jąder ulegających rozpadowi promieniotwórczemu w dowolnej chwili jest proporcjonalna do liczby jąder tego izotopu w tej chwili, a stałą proporcjonalności jest stała rozpadu λ .

Czas połowicznego zaniku

Czas połowicznego zaniku (τ) izotopu jest czasem, w którym połowa jąder promieniotwórczych ulega przemianie

$$N(t) = N_0 e^{-\lambda t} \longrightarrow 0.5 N_0 \equiv N_0 e^{-\lambda \tau}$$
$$\tau \equiv \frac{-\ln(0.5)}{\lambda} , \text{ or } \lambda \equiv \frac{-\ln(0.5)}{\tau}$$

(λ i τ to stałe charakterystyczne dla każdego izotopu promieniotwórczego)

Aktywność

- rozpad / sekunda
- Dawka ekspozycyjna
 - jonizacja wytworzona w powietrzu przez γ

Dawka pochłonięta

- energia pochłonięta w jednostce masy
- Dawka równoważna
 - biologiczne skutki promieniowania

Aktywność

- rozpad / sekunda
- Dawka ekspozycyjne
 - jonizacja wytworzona w powietrzu przez γ

Dawka pochłonięta

- energia pochłonięta w jednostce masy
- Dawka równoważna
 - biologiczne skutki promieniowania

- Aktywność (rozpad / sekunda)
- [Bq] Becquerel
 - w układzie SI jednostka aktywności odpowiada 1 rozpadowi w czasie 1 sekundy.
- [Ci] Curie
 - historyczna jednostka aktywności, odpowiada aktywności grama czystego ²²⁶Ra ≡ 3.7x10¹⁰ Bq.

Aktywność

• rozpad / sekunda

Dawka ekspozycyjne

jonizacja wytworzona w powietrzu przez γ

Dawka pochłonięta

- energia pochłonięta w jednostce masy
- Dawka równoważna
 - biologiczne skutki promieniowania

- Dawka ekspozycyjna (jonizacja wytworzona w powietrzu przez γ)
- [C/kg] Coulombs/kilogram
 - w układzie SI jednostka dawki; liczba kwantów γ wytwarza ładunek elektryczny 1 C w 1 kilogram powietrza.
- [R] Roentgen
 - historyczna jednostka dawki; liczba kwantów γ wytwarzająca ładunek elektryczny 1 jednostki elektrostatycznej w 1 cm³ powietrza.
 - $1[R] = 2.58 \times 10^{-4} [C/kg]$
- Tak zdefiniowana dawka zależy od energii promieniowania.

Aktywność

- rozpad / sekunda
- Dawka ekspozycyjne
 - jonizacja wytworzona w powietrzu przez γ

Dawka pochłonięta

- energia pochłonięta w jednostce masy
- Dawka równoważna
 - biologiczne skutki promieniowania

- Dawka pochłonięta (energia pochłonięta w jednostce masy)
- [Gy] Gray
 - w układzie SI odpowiada pochłonięciu energii 1J przez 1 kg materii.
- [rad] Radiation Absorbed Dose
 - historyczna jednostka odpowiadająca pochłonięciu energii 100 erg przez 1 g materii.
 - 1[rad] = 0.01[Gy]
 - $1[rad] \sim 1.02[R]$ w miękkiej tkance (dla γ).

Aktywność

- rozpad / sekunda
- Dawka ekspozycyjne
 - jonizacja wytworzona w powietrzu przez γ
- Dawka pochłonięta
 - energia pochłonięta w jednostce masy
- Dawka równoważna
 - biologiczne skutki promieniowania

- Dawka równoważna (biologiczne skutki promieniowania)
- QF: Quality Factor współczynnik względnej skuteczności biologicznej
 - wpływ promieniowania na ciało zależy od rodzaju promieniowania a nie od ilości zdeponowanej energii. QF ilościowo opisuje skutek działania biologicznego różnych rodzajów promieniowania.
 - QF=1 dla β , X-rays, i γ
 - QF zmienia się od 1dla X i γ do 10 dla neutronów
 - QF=20 dla cząstek α.

Dawka równoważna (biologiczne skutki promieniowania)[Sv] Sivert

- układ SI; 1[Sv]=QF*1[Gy]
- [rem] Radiation Equivalent Man
 - jednostka historyczna; 1[rem]=QF*1[rad], również 1[rem]=0.01[Sv]

Zapis symboliczny

A Z X

- A liczba masowa liczba nukleonów w jądrze (protony + neutrony).
- Z liczba atomowa liczba protonów w jądrze.
- X symbol atomowy dla izotopu (zdeterminowany przez Z).

Produkcja izotopów

$$_{Z}^{A}X(P_{i},P_{e})_{Z'}^{A'}X'$$

- A, Z, X izotop tarczy
- A', Z', X' izotop produkowany.
- P_i cząstka bombardująca.
- P_e cząstka lub kwant promieniowania elektromagnetycznego mogący powstawać w wyniku reakcji.

Produkcja izotopów β+ promieniotwórczych

- Istotne emitery β+ promieniotwórcze, ich czas połowicznego zaniku (τ), branching ratios (ρ) i schematy produkcji / aktywność:
 - ⁷⁵Br; τ=90.0[min]; ρ=0.755
 - ¹¹C; τ =20.4[min]; ρ =0.9976; ¹⁴N(p, α)¹¹C; 1355[mCi] jako ¹¹C0₂.
 - ⁶²Cu; τ=9.73[min]; ρ=0.980
 - ⁶⁴Cu; τ=12.8[hr]; ρ=0.184
 - 18 F; τ =1.83[hr]; ρ =0.967; 18 O(p,n) 18 F; 341[mCi] jako 18 FDG.
 - ⁵²Fe; τ=83.0[hr]; ρ=0.57
 - ⁶⁸Ga; τ =68.3[min]; ρ =0.891; pochodna ⁶⁸Ge; τ =275.0[day]
 - ¹³N; τ =9.97[min]; ρ =0.9981; ¹³C(p,n)¹³N lub ¹⁶O(p, α)¹³N; 27.9[mCi] jako ¹³NH₃.
 - ¹⁴O; τ=70.91[sec]; ρ=1.0

Produkcja izotopów β+ promieniotwórczych

- Istotne emitery β+ promieniotwórcze, ich czas połowicznego zaniku (τ), branching ratios (ρ) i schematy produkcji / aktywność:
 - ¹⁵O; τ =123.0[sec]; ρ =0.9990; ¹⁵N(p,n)¹⁵O; 279[mCi] as H₂¹⁵O.
 - ⁸²Rb; τ =78.0[sec]; ρ =0.950; (generator: ⁸²Sr, τ =25[day])
 - ²²Na; τ =950[day]; ρ =0.9055
 - ⁶²Zn; τ=9.3[hr]; ρ=0.152

Dlaczego β promieniotwórcze izotopy wykorzystano do obrazowania procesów?

- w związkach chemicznych tworzących organizm człowieka występują pierwiastki (C, N, O, etc.), których izotopy (¹¹C, ¹³N, ¹⁵O, etc.) rozpadają się emitując pozytony.
- niektóre z β promieniotwórczych izotopów mają niewielką masę atomową w porównaniu z masą molekuł (np. F) i dlatego mogą zostać wykorzystane do ich znakowania (nawet wtedy gdy nie występują w tych molekułach w sposób naturalny).
- β promieniotwórcze izotopy mogą więc być dołączane do interesujących molekuł nie zmieniając ich zachowania i roli w ciele człowieka.

Wybrane związki w metodzie PET

COMPOUND	USE
¹⁸ F-2-deoxyglucose	metabolic imaging
¹³ NH ₃ (ammonia)	blood flow
¹¹ C-palmitate	myocardial metabolism
¹¹ C labeled amino acids	protein synthesis, pancreatic
	imaging, tumor metabolism
¹¹ C-butanol	myocardial flow/perfusion
$^{15}O_2, H_2^{15}O$	blood flow
$C^{15}O_2$	blood volume
⁸² Rb-chloride	myocardial perfusion

Typowe mechanizmy rozpadu

Procesy atomowe

• emisja fotonu; emisja promieni X w wyniku przejść elektronów pomiędzy wewnętrznymi powłokami.

Procesy jądrowe

- emisja fotonu: emisja promieni γ w wyniku przejść nukleonu pomiędzy wewnętrznymi stanami.
- emisja cząstek (β , p, n, α , v, etc.)
- Wychwyt elektronu (EC)
 - wychwyt elektronu (K lub L) przez jądro.

Schematy rozpadu

- Schematy rozpadu przekazują informację o możliwym rozpadzie i jego konsekwencjach
- β⁺ Branching ratio (ρ na dalszych slajdach)
 - Prawdopodobieństwo zajścia rozpadu β⁺ na 1 rozpad jądra.
 - Aktywność źródła (Bq) mnożona przez β⁺ branching ratio daje "aktywność pozytonową" (ilość pozytonów/sec).

Branching ratio

- Ponieważ skaner PET jest "nastawiony" tylko na pomiar kwantów anihilacyjnych 511[keV] i wszystkie inne mody rozpadu nie są rejestrowane to wartość branching ratio jest istotna w kalibracji wydajności skanera.
- Dla przykładu, 1[mCi] znacznika z wartością branching ratio równą 0.5 będzie mieć aktywność 0.5[mCi] mierzoną przez skaner PET. Konsekwentnie, mierzona aktywność przez PET musi być dzielona przez wartość branching ratio by otrzymać wartość aktywności rzeczywistej.

Schemat rozpadu 18-F

$\int \frac{1+}{9} F_{(109)}$	<u>0.0</u> 9.77m)	¹⁸ O($(p,n)^{18}$	F	
$\underline{0+} 0.0 EC_1, \beta_1^+$	RADIATION	PARTICLES/ TRANSITION N(I)	ENERGY/ PARTICLE E(I) MEV	Δ(I) RAD G/μCI H	Δ(I) GY KG/BQ S
	β ⁺	1.00E+00	2.498E-01	5.32E-01	4.00E-14
$18 \bigcap$ (stable)	γ^{\pm}	2.00E+00	5.11E-01	2.18E+00	1.63E-13
80	Listed x, y, and	γ^{\pm} radiations		2.17E+00	1.63E-13
	Listed β , ce and	Auger radiations		5.33E-01	4.00E-14
	Listed radiation	IS		2.71E+00	2.03E-13
ρ=0.967					

Schemat rozpadu 15-O

1/2-	0.0
$\sqrt{\frac{15}{8}O_{(122)}}$	2.24s)
<u>1/2-</u> 0.0 EC_1, β_1^+	RADL
$^{15}_{7}N$ (stable)	γ^{\pm} <u>Ka₁ x-1</u> <u>Ka₂ x-1</u>

ρ=0.9990

RADIATION	PARTICLES/ TRANSITION	ENERGY/ PARTICLE F(1) MEV	Δ(I) RAD G/µCI H	Δ(I) GY KG/BQ S
β^+	9.99E-01	7.353E-01	1.57E+00	1.18E-13
γ^{\pm}	2.00E+00	5.11E-01	2.13E+00	1.63E-13
Ka ₁ x-ray	2.65E-06	3.924E-04	2.22E-09	1.67E-22
Ka_2 x-ray	1.32E-06	3.924E-04	1.10E-09	8.31E-23
Auger-KLL β	1.13E-03	3.684E-04	8.87E-07	6.65E-20
Listed x, γ , and γ^{\pm} radiations			2.17E+00	1.63E-13
Listed β , ce and Auger radiations		1.56E+00	1.18E-13	
Listed radiations		3.75E+00	2.82E-13	
Listed p, ce and Listed radiation	IS		3.75E+00	2.82E-13

 $^{15}N(p,n)^{15}O$

Schemat rozpadu 13-N

$\frac{\frac{1}{2} 0.0}{\frac{13}{7}N^{(9.965m)}} {}^{13}C(p,n)^{13}N$						
1/2- 0.0 $/$ EC ₁ , β_1^+	RADIATION	PARTICLES/ TRANSITION N(I)	ENERGY/ PARTICLE E(I) MEV	∆(I) RAD G⁄µCI H	Δ(I) GY KG/BQ S	
30	β^+	9.98E-01	4.918E-01	1.05E+00	7.87E-14	
6 (stable)	γ [⊥] Ka₁ x-rav	2.00E+00 2.38E-06	5.110E-01 2.774E-04	2.18E+00 1.41E-09	1.63E-13 1.06E-22	
	Ka_2 x-ray	1.19E-06	2.774E-04	7.04E-10	5.29E-23	
	Auger-KLL β	1.80E-03	2.564E-04	9.84E-07	7.39E-20	
	Listed x, γ , and γ^{\pm} radiations			2.17E+00	1.63E-13	
0=0.9981	Listed β , ce and Auger radiations			1.05E+00	7.87E-14	
	Listed radiation	IS		3.22E+00	2.42E-13	

Schemat rozpadu 11-C

$\frac{3/2}{11}$	0.0	^{14}N	$(\mathbf{p}, \boldsymbol{\alpha})^1$	^{1}C		
$\int \frac{11}{6}C_{(20.385m)}$						
$\qquad \qquad $	RADIATION	PARTICLES/ TRANSITION N(I)	ENERGY/ PARTICLE E(I) MEV	∆(I) RAD G⁄µCI H		
ייייייייייייייייייייייייייייייייייייי	β^+	9.98E-01	3.856E-01	8.20E-01		
$^{1}_{5}B$ (stable)	γ^{\pm}	2.00E+00	5.11E-01	2.18E+01		
5	Listed x, y, and γ^{\pm} radiations			2.17E+00		
	Omitted x, y, ar	$\frac{1}{2} \gamma^{\pm}$ radiations		9.53E-10		
	Listed B, ce and	d Auger radiations		8.21E-01		
0=0.9976	Listed radiations			2.98E+00		
ρ 0.7770	Omitted radiations			9.53E-10		

∆**(I)**

GYKG/BQS

6.17E-14

1.63E-13

1.63E-13

7.16E-23

6.17E-14 2.24E-13

7.16E-23

Schemat rozpadu 22-Na

RADIATION	PARTICLES/ ENERGY/		Δ(I)	Δ(I)	
	TRANSITION	PARTICLE	$RAD G/\mu CI H$	GY KG/BQ S	
	N(I)	E(I) MEV			
β_1^+	8.98E-01	2.154E-01	4.12E-01	3.11E-14	
β_2^+	5.60E-04	8.350E-01	9.97E-04	7.50E-17	
γ^{\pm}	1.80E+00	5.11E-01	1.96E+00	1.47E-13	
γ_1	9.99E-01	1.275E+00	2.71E+00	2.03E-13	
Listed x, γ , and γ^{\pm} radiations			4.67E+00	3.51E-13	
Omitted x, γ , and γ^{\pm} radiations		2.56E-06	1.92E-19		
Listed β , ce and Auger radiations		4.13E-04	3.11E-14		
Omitted β, ce and Auger radiations		1.88E-04	1.42E-17		
Listed radiations		5.09E+00	3.83E-13		
Omitted radiations		1.91E-04	1.44E-71		

Ve (stable) $\rho=0.5$

 $\rho = 0.9055 \pmod{\beta_1^+} \text{ and } \beta_2^+$

Schemat rozpadu 68-Ge

RADIATION	PARTICLES/	ENERGY/	Δ(Ι)	Δ(I)
	TRANSITION	PARTICLE	RAD $G/\mu CI H$	GY KG/BQ S
	N(I)	E(I) MEV	•	
K ^{So} ₁ x-ray	2.55E-01	9.252E-03	5.03E-03	3.78E-16
K ² ₂ x-ray	1.31E-01	9.225E-02	2.58E-03	1.92E-16
K _{β1} x-ray	3.59E-02	1.026E-02	7.85E-04	5.90E-17
K _{β2} x-ray	1.83E-02	1.026E-02	4.00E-04	3.01E-17
L ^O x-ray	4.10E-03	1.098E-03	9.59E-06	7.21E-19
Auger-KL ₁ L ₁	2.09E-02	7.712E-03	3.44E-04	2.58E-17
Auger- KL_1L_2	5.69E-02	7.857E-03	9.53E-04	7.16E-17
Auger-KL ₁ L ₃	2.40E-02	7.907E-03	4.04E-04	3.03E-17
Auger-KL ₂ L ₂	1.19E-02	8.000E-03	2.03E-04	1.52E-17
Auger-KL ₂ L ₃	1.74E-01	8.037E-03	2.93E-03	2.24E-16
Auger-KL ₃ L ₃	3.17E-02	8.069E-03	5.45E-04	4.10E-17
Auger-KL ₁ X	2.81E-02	8.953E-03	5.36E-04	4.04E-17
Auger-KL ₂ X	2.33E-02	9.103E-03	4.52E-04	3.40E-17
Auger-KL ₃ X	4.25E-02	9.135E-03	8.27E-04	6.22E-17
Auger-KXY	9.49E-03	1.015E-02	2.05E-04	1.54E-17
Auger-L ₁ MM	2.84E-02	1.184E-03	7.17E-05	5.38E-17
Auger-L ₂ MM	4.32E-01	1.028E-03	9.46E-04	7.11E-17
Auger-L ₂ MX	4.17E-02	1.125E-03	1.00E-04	7.51E-18
Auger-L ₃ MM	6.48E-01	1.001E-03	1.38E-03	1.04E-16
Auger-L ₃ MX	7.62E-02	1.098E-03	1.73E-04	1.34E-17
Auger-MXY	2.53E+00	5.928E-05	3.20E-04	2.40E-17
Listed x, γ , and γ^{\pm} radiations		8.80E-03	6.62E-16	
Omitted x, y, and γ^{\pm} radiations		7.80E-06	5.86E-19	
Listed B, ce and Auger radiations		1.04E-02	7.85E-16	
Listed radiations		1.92E-02	1.45E-15	
Omitted radiations			7.80E-06	5.86E-19

Schemat rozpadu 68-Ga

RADIATION	PARTICLES/ TRANSITION	ENERGY/ PARTICLE F(1) MEV	Δ(I) RAD G/µCI H	Δ(I) GY KG/BQ S
ρ ⁺ .	1 12E_02	3 526E-01	8/12E-03	6 33E_16
μ1 β ⁺ 2	8 79F-01	8 358E-01	1 57E+00	1 18F-13
<u>אַל</u>	1 78E+00	5 110F-01	1.94E+00	1.16E-13
¥	3 00E-02	1 077E+00	6 89E-02	5 17E-15
¥3	9.00E-04	1.261E+00	2.42E-03	1.83E-16
<u>√</u> 7	1.30E-03	1.883E+00	5.22E-03	3.92E-16
Listed x. v. and v^{\pm} radiations			2.02E+00	1.52E-13
Omitted x, γ , and γ^{\pm} radiations			3.20E-03	2.40E-16
Listed R. ce and Auger radiations		1.57E+00	1.18E-13	
Omitted β , ce and Auger radiations			1.16E-03	8.71E-17
Listed radiations		3.58E+00	2.69E-13	
Omitted radiation	ons		4.35E-03	3.27E-16

Detekcja promieniowania I

PET to:

- określenie położenia i stężenia takiego izotopu emitującego pozytony, który został wybrany do reprezentowania badanego procesu fizjologicznego (dlatego *Positron*).
- $= -z \varepsilon tat xzg hodok reślanie ojstożonie inteżzrów tat botownią trz ciąła piecjet w z stat w tek reślany z stat$
 - dynamika zmiana egzapinistopy opłożenia i stężenia substancji promieniotwórczej
- obrazowanie planarne
 - <u>i obrazowanie warstwowe</u> (dlatego Tomography).

Dlaczego β promieniotwórcze izotopy wykorzystano do obrazowania procesów?

- w związkach chemicznych tworzących organizm człowieka występują pierwiastki (C, N, O, etc.), których izotopy (¹¹C, ¹³N, ¹⁵O, etc.) rozpadają się emitując pozytony.
- niektóre z β promieniotwórczych izotopów mają niewielką masę atomową w porównaniu z masą molekuł (np. F) i dlatego mogą zostać wykorzystane do ich znakowania (nawet wtedy gdy nie występują w tych molekułach w sposób naturalny).
- β promieniotwórcze izotopy mogą więc być dołączane do interesujących molekuł nie zmieniając ich zachowania i roli w ciele człowieka.

The multiple LORs through multiple points.

Definicja LOR

Określenie linii, wzdłuż której przemieszczają się dwa fotony anihilacyjne, zwanej "Line of Response" lub LOR, jest zasadniczym krokiem w metodzie obrazowania PET i jest związane z następującymi niezależnymi krokami:

- rejestracją przypadku anihilacji
 event detection
- określeniem współrzędnych detektora rejestrującego - event positioning
- stwierdzeniem przypadku koincydencji
 coincidence determination

Układ detekcji

- detektory scyntylacyjne stosowane są w skanerach PET do rejestracji fotonów anihilacyjnych.
- fotopowielacze do wzmacniania sygnałów generowanych w krysztale scyntylacyjnym i do konwersji tego sygnału na impuls elektryczny.
- układy koincydencyjne do stwierdzenia czy rejestrowany foton jest w koincydencji z bliźniaczym anihilacyjnym.

Typy stosowanych detektorów

Materiał	NaI(T1)	BGO	GSO	LSO	PbF ₂	BaF ₂	CsF
gęstość	3.67	7.13	6.7	7.4	7.77	4.89	4.61
średnia							
droga	30	11	14	12	0.94	21	23
pochłaniania							
czas zaniku							
(ns)	230	300	55	40		0.6,620	5
względna	100	1.5	25	75			7
emisja światła	100	15	25	/ 5		6, 20	/
zdolność							
rozdzielcza	7.8	10.1		<10			
hv/MeV	38,000	8,200	10.000	28,000			

rejestracją przypadku anihilacji - event detection

Układ detekcji

Rejestracja kwantu anihilacyjnego

- Foton anihilacyjny deponuje energię w krysztale scyntylacyjnym wzbudzając w nim wtórne, niskoenergetyczne fotony.
- Fotony powstające w krysztale przez łącze optyczne docierają do fotokatody w PMT.
- W wyniku zjawiska fotoelektrycznego wybijane są fotoelektrony.
- Te są przyspieszane w PMT w polu elektrostatycznym w kierunku następnej katody i powodują wybijanie następnych elektronów (wzmocnienie)
- Na końcu łańcucha otrzymujemy mierzalny impuls prądowy.

Układ detekcji, ECAT 951/31-R

 określeniem współrzędnych rejestracji

- event positioning

... koincydencje

Współrzędne oddziaływania są określane jako funkcje amplitud jednoczesne przedowa czklechyklad wyznacza LOR.

zarejestrowane w tym

stwierdzeniem przypadku koincydencji - coincidence determination

Rejestracja LOR'ów

Definicja LOR - podsumowanie

 Określenie linii, wzdłuż której przemieszczają się dwa fotony anihilacyjne, zwanej "Line of Response" lub LOR, jest zasadniczym krokiem w metodzie obrazowania PET i jest jednoznaczne z :

6. The multiple LORs through multiple points.

- rejestracją przypadku anihilacji
 event detection
- określeniem współrzędnych detektora rejestrującego - event positioning
- stwierdzeniem przypadku koincydencji –coincidence determination

Rejestracja i przetwarzanie danych

Układ detekcji

Układ detekcji, ECAT 951/31-R

Rejestracja promieniowania

1 block - 8x8=64 detectors

1 bucket - 4 blocks = 256 detectors

bucket 1 1 ring - 16 buckets = 4096 detectors

> 2 rings = 8192 detectors2 gantry

6. The multiple LORs through multiple points.

Zespół detektorów - ring

Gantry Bucket, ECAT 951/31-R

Buckets and ring 1 in camera, ECAT 951/31-R

Zespół detektorów - gantry

Płaszczyzny obrazowania - Direct Planes (2D)

Centralne płaszczyzny detektorów (różnica 0)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **HLOR/Plane**

16 bezpośrednich płaszczyzn – 1 na detektor

Płaszczyzny między detektorami (różnica 1)

- 15 płaszczyzn pośrednich, jedna pomiędzy parą sąsiadujących detektorów
- z 16 płaszczyznami centralnymi otrzymujemy 31 płaszczyzn obrazowania

Centralne płaszczyzny detektorów (różnica 2)

Płaszczyzny między detektorami (różnica 3)

"All" Planes & względna czułość

#LOR/Plane

Wybór płaszczyzn & względna czułość

 diff 0:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

◆ Real (31 planes)

- [diff 0], [diff 1]
- 1-2-1-2...2-1-2-1

Direct (31 planes)

- [diff 0,2], [diff 1]

- 1-2-3-2...2-3-2-1

◆ All (31 planes)
– [diff 0,2], [diff 1,3]

-1-2-3-4-3...3-4-3-2-1

Image planes / difference of "N"

FOV - pole obserwacji

Skanery PET

- ECAT ART
- ADAC C-PET
- ECAT EXACT
- GE ADVANCE
- ECAT HR+
- ALLEGRO
- GEMINI

24 rings, rotating blocks
hexagonal, curved panels
24 rings, block detectors
18 rings, block detectors
32 rings, block detectors
28 rings, block detectors
28 rings, block detectors

Przegrody międzypłaszczyznowe

Przegrody międzypłaszczyznowe

3D volume planes

W takim rozwiązaniu mamy 256 równoważnych płaszczyzn obrazowania.

Parametryzacja do układu wiązki równoległej

LOR's

Powstawanie Sinogramu

Powstawanie Sinogramu

Przykładowy Sinogram

Przykładowy Sinogram

Przykładowy Sinogram

Rekonstrukcja obrazu

Detekcja promieniowania II

LOR's

Rejestracja kwantu anihilacyjnego

- Foton anihilacyjny deponuje energię w krysztale scyntylacyjnym wzbudzając w nim wtórne, niskoenergetyczne fotony.
- Fotony powstające w krysztale przez łącze optyczne docierają do fotokatody w PMT.
- W wyniku zjawiska fotoelektrycznego wybijane są fotoelektrony.
- Te są przyspieszane w PMT w polu elektrostatycznym w kierunku następnej katody i powodują wybijanie następnych elektronów (wzmocnienie)
- Na końcu łańcucha otrzymujemy mierzalny impuls prądowy.

stwierdzeniem przypadku koincydencji - coincidence determination

6. The multiple LORs through multiple points.

Określenie LOR

- Określenie linii, wzdłuż której przemieszczają się dwa fotony anihilacyjne, zwanej "Line of Response" lub LOR, jest zasadniczym krokiem w metodzie obrazowania PET i jest związane z następującymi niezależnymi krokami:
 - rejestracją przypadku anihilacji
 - event detection
 - określeniem współrzędnych detektora rejestrującego event positioning
 - stwierdzeniem przypadku koincydencji
 - coincidence determination
- Wyposażenie
- Oddziaływanie Pozyton / Foton z materią

Wyposażenie - LOR

Rejestracja zdarzeń

- zdolność rozdzielcza detektora
- typ zarejestrowanych zdarzeń
- Współrzędne zdarzenia
- Przypadki koincydencji

Energetyczna zdolność rozdzielcza kryształu BG) – 25%

Strata zliczeń vs. Aktywność w FOV

Wyposażenie - LOR

- Rejestracja zdarzeń
 - zdolność rozdzielcza detektora
 - typ zarejestrowanych zdarzeń
- Współrzędne zdarzenia
- Przypadki koincydencji

rejestracją przypadku anihilacji - event detection

Pozycjonowanie zdarzenia: sygnał z PMT

Współrzędne oddziaływania są określane jako funkcje amplitud sygnałów z czterech PMT.

$$x = \frac{A + B - C - D}{A + B + C + D}$$

$$y = \frac{A - B + C - D}{A + B + C + D}$$

➤ X

Equipment confounds to LOR determination

- Rejestracja zdarzeń
 - zdolność rozdzielcza detektora
 - typ zarejestrowanych zdarzeń
- Współrzędne zdarzenia
- Przypadki koincydencji

Co rejestrujemy? ... koincydencje – zdarzenia jednoczesne

Czasowe okno koincydencji

Zarejestrowane przypadki - (Prompt events)

 Przypadki powstające w wyniku rejestracji fotonów, które układ pomiarowy zaklasyfikuje jako powstające i tworzące LOR

Zdarzenia zaburzające

- koincydencje przypadkowe
- koincydencje wielokrotne
- rozproszenie kwantów
- pochłanianie kwantów
- czas martwy układu

zdarzenia przypadkowe - koincydencje losowe

dla każdej LOR liczba koincydencji przypadkowych

$$R_{12} \sim 2^* t^* N_1^* N_2$$

• układ odrzuca te zdarzenia w wyniku:
 a) symulacji szybkości zdarzeń przypadkowych -

b) pomiaru szybkości koincydencji przypadkowych

zdarzenia przypadkowe – odrzucanie koincydencji losowych

zdarzenia wielokrotne - koincydencje wielokrotne

 układ odrzuca takie zdarzenia, w wyniku elektronicznej eliminacji

Zdarzenia prawdziwe

Prawdziwe = Zarejestrowane - Losowe - Wielokrotne

Rekonstrukcja obrazu

 $I=I_0e^{-\mu x}$

w CT znane I_o - mierzone I - wyznaczane μ
w PET znane μ - mierzone I - wyznaczane I₀

- zebrana informacja jest przetwarzana komputerowo
- wykorzystuje się różnorodne algorytmy przetwarzania

Pozyton&Foton zaburzenie określenia LOR

dokładności określania LOR dokładność obrazowania

Pozyton

- zasięg
- pęd

Foton

- rozproszenie
- pochłaniania

Rozmiar detektora

• Pęd układu $\beta^+/\beta^$ bezpośrednio przed anihilacją może być różny od 0. Z tego powodu obserwuje się niewielkie odchylenie kąta emisji fotonów od 180° (±0.25°) i niewielką zmianę jego energii od 511[keV] $(\pm 40[eV]).$

rozproszenie fotonu

efekt rozproszenia fotonu

efekt rozproszenia fotonu

okno energetyczne / prawdopodobieństwo rozproszenia fotonu

Rozmiar detektora

wartość FWHM funkcji LSF w centrum pola widzenia zbliża się do ~0.5 szerokości detektora

Sumaryczna rozdzielczość w PET

```
np. dla <sup>18</sup>F
i dla kamery Siemens CTI/951R
```

 $S = (1^{2} + 2.24^{2} + 2.8^{2})^{1/2} = 3.72 \text{ mm}$ średnia droga $\beta^{+}R$ ______ non-collinearity $\Delta\xi$ ______ rozmiar detektora 5.62/2 ______

Podsumowanie – problemy w PET w realnym świecie

- zdolność rozdzielcza detektora - ~25% dla BGO
- czas martwy układu
- PMT gains
- Prompts, Randoms, Multiples
- Zasięg pozytonu

- nie-zerowy pęd pozytonu w momencie anihilacji
 - ~511[keV]; ~180[deg]
- rozproszenie fotonu anihilacyjnego

PET – wyznaczanie aktywności źródła

korekcja na pochłanianie fotonu

Pochłanianie fotonów w ośrodku o współczynniku pochłaniania µ na drodze dx.

Równanie różniczkowe

Pochłanianie fotonów w ośrodku o *jednorodnym* współczynniku pochłaniania μ na drodze x.

Równanie całkowe

Pochłanianie fotonów w ośrodku o *niejednorodnym* współczynniku pochłaniania $\mu(x)$ na drodze x.

 $A = A_0 e^{-\oint \mu(x) dx}$

Pochłanianie fotonów w ośrodku o *niejednorodnym* współczynniku pochłaniania μ(x) na drodze x.

 $A = A_0 e^{-\mu x}$

$$A_{1} = A_{0}e^{-\mu_{1}dx|_{0}^{1}}$$

$$A_{2} = A_{1}e^{-\mu_{2}dx|_{1}^{2}} = A_{0}e^{-\mu_{1}dx|_{0}^{1}}e^{-\mu_{2}dx|_{1}^{2}} = A_{0}\prod_{k=1}^{2}e^{-\mu_{k}dx_{k}}$$

$$A_{i} = A_{0}\prod_{k=1}^{2}e^{(-\mu_{k}dx_{k})}$$

k

Pochłanianie fotonów w ośrodku o *niejednorodnym* współczynniku pochłaniania µ(x) na drodze x.

$$A_{i} = A_{0} \prod_{k=1}^{i} e^{(-\mu_{k} dx_{k})} = A_{0} e^{\left(\sum_{k=1}^{i} (-\mu_{k} dx_{k})\right)}$$
$$A_{i} = A_{0} e^{\left(\sum_{k} (-\mu_{k} dx_{k})\right)} = \left[A_{0} e^{\left(\int_{0}^{i} \oint -\mu(x) dx\right)}\right]$$

Pochłanianie na drodze

 $A_i = A_0 e^{\binom{i}{0} - \mu(x) dx}$

- A_i = aktywność mierzona na zewnątrz medium
- A₀ = aktywność w centrum
- $\mu(x) = współczynnik pochłaniania x (\geq 0)$
- exp() może zmieniać się od 0 to 1

Pochłanianie fotonów w ośrodku o *jednorodnym* współczynniku pochłaniania µ na drodze x.

$$A_{i} = A_{0}e^{\binom{i}{0} - \mu(x)dx} = A_{0}e^{\binom{i}{0} - \mu dx}$$
$$= A_{0}e^{-\binom{i}{0} - \mu dx} = A_{0}e^{-\binom{i}{0} - \mu dx} = A_{0}e^{-\mu dx}$$

(for straight line path)

Pochłanianie fotonów w ośrodku o *niejednorodnym* współczynniku pochłaniania $\mu(x)$ na drodze x.

$$A_{i} = \tau_{i} A_{o}; \quad \tau_{i} \equiv e^{\binom{i}{0} - \mu(x)dx}$$

- $A_0 = aktywność w centrum$
- $A_i = aktywność mierzona w punkcie$ *i*.
- $\mu(x) = współczynnik pochłaniania w x$
- τ_i = prawdopodobieństwo transmisji fotonu ze źródła do punktu i; wartość jest z zakresu [0,1]

Korekcja na pochłanianie fotonów

$$A_{i} = \tau_{i} A_{o}$$

$$A_{1} = \tau_{1} A_{o} \qquad A_{2} = \tau_{2} A_{1}$$

$$A_{c} = \tau_{1} \tau_{2} A_{o}$$

- A_i = aktywność mierzona w punkcie *m* po przejściu drogi *i* ze źródła o A₀
- τ_i = prawdopodobieństwo transmisji fotonu ze źródła na drodze *i* (τ_i są niezależne).
- A_c = całkowita aktywność PET mierzona pomiędzy punktami 1 i 2.

Korekcja na pochłanianie fotonów

$$\tau_i \equiv e^{\binom{i}{0} - \mu(x) dx}$$

$$\tau_1 \tau_2 = e^{\begin{pmatrix} 1 & -\mu(x) & dx \end{pmatrix}} e^{\begin{pmatrix} 2 & -\mu(x) & dx \end{pmatrix}}$$

$$\tau_1 \tau_2 = e^{\binom{2}{1} \oint -\mu(x) dx}$$

Korekcja na pochłanianie fotonów

$$A_{c} = \tau_{1}\tau_{2} A_{o}$$
$$\alpha A_{c} = A_{o}; \ \alpha \equiv \frac{1}{\tau_{1}\tau_{2}}$$

- α = attenuation correction factor
- τ_i = prawdopodobieństwo transmisji fotonu ze źródła na drodze *i* (τ_i są niezależne).
- $A_c = całkowita aktywność PET$

Sinogram formation revisited

Applying attenuation correction $A_{\alpha} * \alpha = A_{\alpha}$

- μ = uniform attenuation coefficient
- α = attenuation correction factor
- $|\mathbf{x}_2 \mathbf{x}_1|$ = distance between points \mathbf{x}_2 and \mathbf{x}_1

Calculated attenuation correction (uniform µ)

- The PET camera records the number of coincidence events occurring along a large number of lines of response (LORs).
- If μ is a constant of known value, and you can measure the path distance through the attenuating medium (|x₂-x₁|) for each LOR, you can calculate the correction which needs to be applied to the number of measured photons in these LORs which will yield the actual number of photons at the source.

$$\alpha A_c = A_o$$
 $\alpha = \frac{1}{e^{(-\mu|x_2-x_1|)}}$

Calculated attenuation correction (uniform μ) $\alpha = \int_{\alpha} (-\mu |x_2 - x_1|)$ $\alpha A_c = A_o$ A_0 somewhere along this line $A_c = \#$ of photons measured by coincidence detectors positioned at X₁ and X₂

Circular cylinder sinogram 0[det] 192[det]

Calculated attenuation correction (uniform µ)

1st reconstruction (no attenuation correction)

2nd reconstruction (calculated attenuation correction)

[uniform cylindrical flood phantom]

Calculated attenuation correctionAdvantagesDisadvantages

- Doesn't require additional scan
 - Faster more throughput
 - Less radiation exposure
- No counting statistic problems

- Assumes uniform attenuation within modeled regions
 - sinus cavity
 - variable bone thickness
 - head holder
- Operator positioned ellipse
- Automated method may not identify scalp
- Motion artifacts

Measured attenuation correction ($\mu(x)$)

 $\alpha = \int_{0}^{1} \left(\frac{2}{1} \oint_{0} -\mu(x) dx \right)$

 $\alpha A_c = A_o$

Applying attenuation correction $A_{\alpha} * \alpha = A_{\alpha}$

Measured attenuation correction

- Blank Scan
- Transmission Scan
- Emission Scan
- (blackboard illustration)

Blank & Transmission scans

Blank sinogram samples (3 planes)

Transmission & attenuation correction sinograms

Measured Attenuation Correction (short axis heart)

Measured Attenuation Correction (zoomed short axis heart)

uncorrected

Measured attenuation correctionAdvantagesDisadvantages

- Correctly accounts for variable µ(x) throughout the scanned region.
- Quantitatively more accurate than calculated attenuation correction in human subjects.
- More table time for subject to acquire the transmission scan.
- Additional radiation exposure from transmission scan
- Introduces additional statistical noise since attenuation correction coefficients are the ratios of measured counts.
- Motion artifacts

absorpcja fotonu

$$P_{LOR} = P_{LOR}^{D_1} \cdot P_{LOR}^{D_2} = \exp\left(-\int_0^{x_1} \mu(x) dx\right) \cdot \exp\left(-\int_{x_1}^d \mu(x) dx\right) = 0$$

$$=\exp\left(-\int_{0}^{a}\mu(x)dx\right)$$

Dla każdej LOR określa się więc tłumienie wykorzystując dodatkowe źródło promieniowania zamontowane w skanerze tworząc dodatkowy pierścień.

D2
PET wykorzystywana w:

- onkologii (80%)
- kardiologii (10%)
- neurologii (10%)

••

na etapie diagnozowania
na etapie monitorowania terapii

- obrazowanie całego ciała (70%)
- obrazowanie warstwowe (20%)
- obrazowanie mózgu (10%)

Badania kliniczne PET

Neurologia 10 %

Kardiologia 10 %

Onkologia 80 %

komórki nowotworowe mają kilkakrotnie wyższy metabolizm od zdrowych komórek

- większość współczesnych badań klinicznych wykorzystuje metabolizm glukozy z użyciem ¹⁸F-FDG.
- trwają ciągłe poszukiwania coraz bardziej specyficznych związków znakowanych ¹⁸F oraz innymi izotopami do zastosowań onkologicznych

Etapy obrazowania w technice PET

IBA 30MeV Cyclotron

Hot Lab / pneumatic delivery station

ACS cabinets, ECAT 951/31-R

PET Operator's station

PET Operator's station / camera

Novastat whole blood analyzer

Counting / LKB

Volume tool - 3D orthogonal slices

Cyklotron

np. Cyclone 18/9 IBA wiązki: protony 80 µA 18 MeV deutrony 35 µA 9 MeV Etap I - produkcja izotopów promieniotwórczych czas naświet. $^{14}N(d,n)^{15}O$ ciągły przepływ $^{14}N(p,\alpha)^{11}C$ 30 min. $^{16}O(p,\alpha)^{13}N$ 15 min $^{18}O(p,n)^{18}F$ 120 min $^{20}Ne(d,\alpha)^{18}F$ 60 min

izotopy promieniotwórcze

Podstawowe dane dotyczące systemów do produkcji radioizotopów

Prod.	GE		CTI/Siemens		IBA Cyclone	
Cykl	Minitrace	PETtrace	RDS111	Eclipse	18/9	10/5
E [MeV]	10/-	16.5/8.2	11/-	11/-	18/9	10/5
Ι [μΑ]	50	70	2*40	2*60	80/35	60/35
¹⁸ F/2h [Ci]	1.6	4.5	1.6	2	5	3
FDG/2h	1.1	3.1	1.1	1.5	3.5	2

Czas połowicznego zaniku izotopów promieniotwórczych wykorzystywanych w PET

izotop	T _{1/2}
^{11}C	20.39 min
^{13}N	9.97 min
¹⁵ O	2.03 min
^{18}F	109.8 min
$^{75}\mathrm{Br}$	98.0 min

1.	CYCLONE 18/9	6.	Cold gas cabinet	11.	Target utility cabinet
2.	Control station	7.	Water manifold	PS1.	Power distribution
3.	Water conditioner	8.	Radioactive gas cabinet	PS2.	R.F. Driver amplifier
4.	Hydraulic station	9.	Helium exchanger	PS3.	Main coils & ion source P.S
5.	Gas supply	10.	Air manifold	PS4.	P.L.C.

Notes: (--) no synthesis

(1) The distance between cyclotron and chemistry modules has to be less than 25 m.

(2) Trapped in Sodalime

(3) Trapped in KOH

(4) Activity flow at output in the laboratory

(5) Please note that two targets are offered for F⁺ production. One is a small volume target (300 µl) producing over 450 mCi in 1 hour.

The other is a large target 12 ml; producing over 3000 mCi in 2 hours. With the large volume target, O-18 can be recuperated after each run.

All IBA systems should be considered as laboratory equipment for the production of radioisotopes and labelled compounds. All applications must conform to local laws and regulations. They are undertaken under the sole responsibility of the user's radiopharmacist.

Przeznaczenie wybranych związków

Radioizotop	Radiofarmaceutyk		Zastosowanie w badaniach
			medycznych
¹⁵ O	H ₂ ¹⁵ O	badanie przepływu krwi	Badania mózgu, serca, układu
пс	¹¹ CO ₂		krwionośnego
¹³ N	Aminokwasy z	pomiar użycia aminokwasów	Badanie wydolności mięśnia
	podstawionym β^+		sercowego, gospodarki aminowej
	promieniotwórczym		w organizmie
	azotem 13		
¹⁸ F	FDG	badanie metabolizmu glukozy	Badania onkologiczne całego
			ciała

System kontroli radiofarmaceutyków

przed podaniem testy na:

- sterylność
- obecność endotoksyn
- zanieczyszczenia metalami ciężkimi
- pH
- czystości radiochemicznej i chemicznej

Produkcja i badania przeprowadzane w komorach II klasy biologicznej z laminarnym przepływem w warunkach pełnej aseptyki

PET to badanie i diagnozowanie w:

- kardiologii
- neurologii
- onkologii
- •

PET to badanie i diagnozowanie w:

kardiologii

neurologii

 badanie przepływu krwi po wstrzyknięciu H₂¹⁵O lub podanie ¹¹CO₂

• badanie metabolizmu glukozy po podaniu FDG

Badania kardiologiczne

bypass patient

blood flow metabolism

blood flow metabolismograniczony przepływ krwi

- ograniczony przepływ krwi
- zanik metabolizmu wskazuje na martwicę tkanki
- zalecany przeszczep

- mięsień serca nadal 'żywy' gdyż metabolizmu jest utrzymany
- transplantacja nie wskazana
- bypass wieńcowy podwyższy funkcjonalność serca

- obraz serca po zawale
- strzałki pokazują obszary 'martwicy niedokrwiennej'
- pacjent nie będzie poddany operacji serca

Badania kardiologiczne

obraz serca po zawale
strzałki pokazują obszary 'martwicy niedokrwiennej'
pacjent nie będzie poddany operacji serca

PET to badanie i diagnozowanie w:

- kardiologii
- neurologii
- onkologii

- głównie
- wizualizacja funkcjonowania mózgu,
 - tj. pomiar dotlenienia i metabolizmu różnych jego części w czasie odpoczynku czy wzmożonego wysiłku
- pozwala to
- określić regiony mózgu odpowiedzialne za stany padaczkowe
- ocenić stan mózgu w chorobach Alzheimer'a, Huntington'a, Parkinson'a, ...

Badania neurologiczne

Badania neurologiczne - stany padaczkowe

Obraz mózgu 9 letniej dziewczynki z ostrymi napadami padaczkowymi źle powstrzymywanymi przez lekarstwa

- obraz PET wskazuje obszar odpowiedzialny za ten stan
- po chirurgicznej interwencji (usunięcie tego obszaru) pacjentkę zaliczono do grupy 'seizure-free"

Badania neurologiczne - stany padaczkowe

Obszar odpowiedzialny za epilepsję
obniżony metabolizm w ognisku padaczkowym w prawym płacie skroniowym 11 letniej dziew.
po interwencji chirurgicznej zaliczona do grupy 'seizure-free, doing well in school'

MRI PET F-18 FDG MRI/PET Overlay

Obszar odpowiedzialny za epilepsję
wzmożony metabolizm w ognisku padaczkowym

- NMR bez zmian
- PET wskazuje ognisko
- po interwencji chirurgicznej zaliczony do grupy 'seizure-free, doing well in school'

Badania neurologiczne - urazy

Pacjent uderzony przez skałę w prawą stronę głowy

Badania neurologiczne

obraz mózgu po podaniu 'kokainy'
obniżony metabolizm w obszarze czołowym

PET to badanie i diagnozowanie w:

kardiologii
neurologii
onkologii

 komórki nowotworowe mają kilkakrotnie wyższy metabolizm od zdrowych komórek

- pozwala łatwo rozróżnić stan łagodny i złośliwy
- pozwala łatwo wykryć przerzuty do najodleglejszych części ciała

Badania onkologiczne - rak piersi

Obraz PET pokazujący złośliwy nowotwór piersi nie wykryty przez CT, NMR i mammografię Obraz PET tego samego pacjenta z powiększonym lewym węzłem chłonnym (strzałka), który w wyniku biopsji został uznany za przerzutowy.

Badania onkologiczne - rak płuc

PET pinpoints the "hot spots" caused by hypermetabolism of sugars by tumors in breast to bone cancer.

The post-chemotherapy PET scan is negative while the CT had given a false positive.

Starzałki –

podwyższony metabolizm spowodowany przez nowotwór płuc + przerzut

Po chemoterapii Scan PET – negatywny Scan CT – fałszywie pozytywny

Badania onkologiczne - rak płuc

A whole-body PET scan revealed the primary lung cancer had spread to the brain, thus eliminating lobectomy as a management option.

Badania onkologiczne - rak okrężnicy

One year after treating this patient for carcinoma of the rectum her CEA levels began to rise. This followup scan, while negative for the large intestine, caught a recurrence in the liver.

Badania onkologiczne - rak głowa-szyja

Badania onkologiczne - chłoniak

PET scans trace the progress of this patient's recovery, showing that the chemotherapy is working.

Badania onkologiczne - czerniak

This 63 year old man's PET scan shows that his melanoma has spread and that chemotherapy is his best option.

Obraz PET pacjenta z nadczynnością tarczycy pokazujący niejednorodny rozkład izotopu (a) w porównaniu z jednorodnym rozkładem widocznym przy użyciu konwencjonalnej gamma-kamery (b)

Rozwiązania hybrydowe

technika CT obraz anatomiczny ciała

technika PET obraz procesów biochemicznych

Obraz PET nowotworowe ogniska

Obraz CT anatomiczny obraz

Obraz PET+CT

GE Discovery LS

Image fusion -

- metoda precyzyjnego łączenia obrazów różnych metod
- konieczne skalowanie, aby wszystkie obrazy miały ujednoliconą skalę i przestrzenny układ odniesienia

Fused Image Tomography

PET w świecie

- 1skaner PET / 0.7 mln ludzi kraje rozwinięte
- 1skaner PET / 0.5 mln ludzi USA
- ~3 skanery / 1 cyklotron

Analiza kosztów w diagnostyce nowotworów

- umożliwia diagnozę pacjenta często wcześniej nim jest to możliwe przy wykorzystaniu innych technik
- zastąpienie wielu procedur medycznych w jednym badaniu
- wskazuje postęp choroby i odpowiedź pacjenta na leczenie
- sugeruje najbardziej wskazaną terapię

Wykorzystanie PET

Zadanie diagnostyki

zasadniczy problem

→ Czy mamy do czynienia z nowotworem i w jakim stadium?

wynik	'stan faktyczny'		
badania medycznego	dodatni	ujemny	
dodatni (P)	TP	F'P	
ujemny (N)	FN	TN	

Jakość diagnozy medycznej

CZUŁOŚĆ (SENSITIVITY) (frakcja dodatnia)

 $Spec = \frac{IN}{TN+FP}$

SPECYFICZNOŚĆ (SPECIFICITY) (frakcja ujemna)

DOKŁADNOŚĆ (ACCURACY) (frakcja poprawnie zdiagnozowana) $Acc = \frac{TP+TN}{TP+TN+FP+FN}$

Parametry analizy ekonomicznej Kluczem porównania strategii alternatywnej (a) z bazową (bl) są: zmiana oczekiwanej długości życia $LE_a - LE_{bl}$ zmiana kosztów diagnostyki COST_a – COST_{bl}

• zmiana stosunku koszt/oczekiwana długość życia $ICER = COST_a - COST_{bl} / LE_a - LE_{bl}$

Możliwości dla ICER

$ICER = COST_a - COST_{bl} / LE_a - LE_{bl}$

- ICER > 0
 - gdy COST_a>COST_{bl} i LE_a>LE_{bl} należy określić akceptowaną wartość na ICER
 - gdy COST_a<COST_{bl} i LE_a<LE_{bl} należy bezwzględnie określić akceptowany poziom oszczędności na stratę roku oczekiwanej długości życia

• ICER < 0

- gdy COST_a<COST_{bl} i LE_a>LE_{bl} nowa strategia jasno udokumentowana
- gdy COST_a>COST_{bl} i LE_a<LE_{bl} nowa strategia do odrzucenia

Zadania analizy ekonomicznej

- kosztochłonność diagnostyki PET dla różnych grup chorobowych
- czułość analizy ekonomicznej na zmianę parametrów PET

- uznanie diagnostyki przez refundatorów kosztów leczenia
- możliwość zastąpienia dotychczasowych procedur diagnostycznych przez procedurę PET

Zadania analizy ekonomicznej

kosztochłonność diagnostyki możliwa do pełnego określenia dopiero po pewnym okresie jej funkcjonowania, gdyż zależy od wielu parametrów 'lokalnych' Parametry analizy ekonomicznej

drzewo decyzyjne

- dla każdego rodzaju schorzenia

- dla każdego rodzaju postępowania z pacjentem

Co nowa technika daje w procesie leczenia?

aspekt medycznyaspekt ekonomiczny

Drzewo decyzyjne

konieczne dla każdej ścieżki postępowania

niewystarczająca ilość niezbędnych danych dla wielu przypadków

 najlepiej przebadano i udokumentowano grupę chorych z rakiem płuc

• 80% to rak typu NSCLC

Konieczne parametry do drzewa decyzyjnego i kosztochłonności Drzewo niemieckie – przykład zastosowania

 najlepiej przebadano i udokumentowano grupę chorych z rakiem płuc

Statystyka raka płuc

•80% to rak typu NSCLC

Standardową procedurą postępowania w przypadku NSCLC bez odległych lub rozległych przerzutów do węzłów chłonnych jest chirurgiczna resekcja.

Procedura postępowania w przypadku NSCLC

Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598, University of Cologne, Germany

European Journal of Nuclear Medicine Vol. 27, No. 11, November 2000

Wartości i zakresy zmienności wszystkich zmiennych analizy drzewa decyzyjnego.

Variable	Base	Range	Variable	Base line	Range
	line				
Sensitivity, Specificity			Life expectancy		
PET sensitivity, N2/N3, n.s.l.n.	0.74	0.59-0.79	Surgery, N0/N1, M0	4.5y	
PET sensitivity, N2/N3, e.l.n.	0.95	0.80-1.0	Surgery, N2/N3, M0	1.8y	
PET specificity, N2/N3, n.s.l.n.	0.96	0.81-1.0	Surgery, N0-3, M1	0.5y	
PET specificity, N2/N3, e.l.n.	0.76	0.61-0.81	Palliative,	2.6y	
CT sensitivity, N2/N3,	0.60		N0/1,M0(resectable pats.)	1.8y	
CT specificity, N2/N3,	0.77		Palliative, N2/N3, M0	0.5y	
			Palliative, N0-3, M1		
Mediastinoscopy sensitivity	0.72	0.62-0.87	Discounting rate	0.05	
Mediastinoskopy specificity	1.0				
Probability			Reimbursement	EUR	
N2/3 in locally resectable NSCLC	0.3	0.1-0.6	Conventional Staging, CT	585	
M1 detected by PET only	0.05	0-0.05	Whole-body PET	1227	627-1827
Use of mediastinoscopy in n.s.l.n.	0.42	0-1.0	Mediastinoscopy,	1138	
Recurrence after curative esection	0.38		hospitalization	11656	
			Surgery	11378	5689-22756
			Palliative		
Mortality			Morbidity		
Mediastinoscopy	0.005		Mediastinoscopy	0.02y	
Surgery	0.037		Surgery	0.1y	

Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598, University of Cologne, Germany

Procedura postępowania w przypadku NSCLC

Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598, University of Cologne, Germany

European Journal of Nuclear Medicine Vol. 27, No. 11, November 2000

Procedura postępowania w przypadku NSCLC aspekt medyczny - co to daje

	Strategia (A)	Strategia (C)
operacje chirurgiczne	83.2	76.1
badania histologiczne	61.5	30.3
wziernikowanie śródpiersia	61.8	30.4
zgony	3.1	2.9

Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598,

University of Cologne, Germany

Procedura postępowania w przypadku NSCLC Czułość analizy

Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598,

University of Cologne, Germany

Procedura postępowania w przypadku NSCLC

W. J. Scott, et al., Ann. Thorac. Surg. 66 (1998) 1876 Dept. of Surgery, Creighton Univ., Omaha Dept. Of Biomathematics, Univ. of California

biopsy +ve - unresectable to radiation therapy

Figure 1. Decision tree for CT + PET and CT alone. The outcomes of each test follow the test block, and each outcome is given a probability of occurring given the sensitivity and specificity of the test for that given block. The '+ve' in the decision trees means that particular test indicates that the patient is positive for unresectable disease.

Procedura postępowania w przypadku NSCLC

J. S. Sloka, et al., Med. Sci Monit, 10 (2004) MT73 Memorial University of Newfoundland, Canada

> Table 1. Variables of interest used in the decision model. Derivation of all values of interest appear throughout the methods section.

Population		Biopsy		
Unresectable lung	0 335	Cost	\$588	
cancer prevalence	0.000	_Mortality	0.3%	
CI		Sensitivity	100%	
Cost	\$290	Specificity	100%	
Mortality	0.0025%	Surgical Resection		
Sensitivity	67%	Cost	\$17,521	
Specificity	73%	Mortality	3%	
PET		Life expectancy		
Cost	\$1,029	Local population	18.3 years	
Mortality	0%	Patients with N3	0.83 years	
Sensitivity	91%	Patients after curative	1 Guerra	
Specificity	96%	_surgery	4.0 years	
Radiation Therapy				
Cost	\$10,475			
Mortality	0%			

Procedura postępowania w przypadku NSCLC

J. S. Sloka, et al., Med. Sci Monit, 10 (2004) MT73 Memorial University of Newfoundland, Canada

Czułość analizy

Analiza czułości modelu decyzyjnego na parametry, które zmieniano aż oczekiwana wartość COST/LE strategii CT stawała się niższa niż wartość strategii PET+CT. W miejscu '-' strategia PET+CT ma zawsze mniejszą wartość COST niż metoda CT.

	COST	LE	podstawa
zachorowalność	> 12.9 %	> 2.8 %	33.5 %
Koszt CT	_		290 \$
Koszt PET	< 2484 \$		1029 \$
Koszt chirurgii	> 1729 \$		17521 \$
Koszt biopsji	-		588 \$
Sens CT	<86.3 %	< 97.9 %	67 %
Spec CT	-	-	73 %
Sens PET	> 37.8 %	-	91 %
Spec PET	_	> 35.4 %	96 %

Procedura postępowania w przypadku NSCLC

J. Scott Sloka, et al., Med. Sci. Monit. 10 (2004) MT73-80

Czułość analizy

	CT i PT		СТ	
	EC	US	EC	US
średnie dla PET i CT	16140	9	17595	99
najniższe PET i średnie CT	17287	49	17595	99
najniższe PET i najwyższe CT	17096	27	16769	54

Oczekiwany koszt i liczba niewłaściwych operacji chirurgicznych dla różnych wartości czułości i specyficzności metod PET i CT.

PET całego ciała w Kanadzie - 1029 \$

tu oszczędności 1455\$/pacjenta ze wzrostem LE 3.1 dnia

Procedura postępowania w przypadku NSCLC Czułość analizy

K. Abe, S. Kosuda i S. Kusano, Ann. Nucl. Med.. 17 (2003) 649 Dept. Of Radiol. Tokorozawa, Japan PET całego ciała w Japonii - 625 \$

tu oszczędności ~690\$/pacjenta ze wzrostem LE ~12 dni

Procedura postępowania w przypadku Colorectal

B. B. Kelley, et al., Med. Sci. Monit. 10 (2004) MT73-80

Southernex Imaging Group, Brisbane, Queensland, Australia

PET całego ciała w Kanadzie - 1200 \$

tu oszczędności ~580\$/pacjenta ze wzrostem LE ~0.52 lat

Procedura postępowania w przypadku niedokrwiennej choroby serca

Strategy 2 - Pre-operative PET scan to select patients for surgery

Strategy 3 - Medical Therapy

Table 1. Model Variables and Their Default Values

Default values derived from hospital sources	
Costs (derived from entire case-mix - Figure 2)	
PET scan	£742
CABG (excluding OIR/ICU/ward costs)	£4,117
OIR/day	£404
ICU/day	£697
Ward/day	£102
Medical therapy/year	£780
Mean length of stay in each clinical area (based on patients with $EF < 30\%$ —Fig 2)	
Ward (preoperative)	1.6 days
OIR	1.0 days
ICU	5.6 days
Ward (postoperative)	6.5 days
Hospital survival (based on patients with EF < 30%—Fig 2)	
Overall survival of patients undergoing CABG	91.4%
Survival from operating theater	96.5%
Survival from OIR	100%
Survival from ICU	94.3%
Survival from ward	98.2%
Default values derived from the literature (references given in text)	
% with mismatch defects	50%
PET characteristics	
Sensitivity and specificity	80%
Nondiagnostic rate	5%
One-year survival	
Mismatch defects + CABG	91.4%
Mismatch defects + medical therapy	50%
Match defects + CABG	91.4%
Match defects + medical therapy	92%

CABG = coronary artery bypass grafting; EF = ejection fraction; ICU = intensive care unit; OIR = overnight intensive recovery; PET = position emission tomography.

P. B. Jacklin, et al., Ann. Thorac. Surg. 73 (2002) 1403 St. Thomas' Hospital, London

Koszt badania PET

PET całego ciała w Niemczech – 1227 EUR PET całego ciała w Kanadzie - 1029 \$ PET w Australii – 1200 \$ PET w USA (Los Angeles) – 2000 \$ PET w Japonii – 1083 \$ (zwracane 625\$) PET w Londynie – 742L

Statystyka raka w Polsce

W roku 1999zarejestrowane nowe przypadki rakakobietymężczyźni5100255527

województwo Świętokrzyskie
rok 2000zarejestrowane nowe przypadki rakakobiety
2254mężczyźni
2669

liczba ciągle leczonych i monitorowanych pacjentów ~4 razy większa

Najbardziej 'popularne' choroby nowotworowe w Polsce

male	%
Lung	27.6
Colorectal	8.9
Gastroesophageal	8.3
Prostate	7
Bladder	6.1
Melanoma	4.3
Pancreatic	2.8
Brain	2.4
Hepatocellular	1.5
Testicullar	1.2

female	%
Breast	19.7
Cervical and Uterine	17.9
Colorectal	9.0
Lung	7.6
Gastroesophagel	4.0
Brain	2.4
Hepatocellular	1,7
- w Polsce w 1999 jedna z najwyższych na świecie częstość nowotworów złośliwych u osób w średnim wieku (45-64 lat)
- 37% zgonów u mężczyzn i 41% zgonów u kobiet z powodu nowotworów złośliwych ma miejsce przed 65 rokiem życia
- w Szwecji 80% (M) i 85% (K) po 65 roku życia
- w GB 75% po 65 roku żucia
- ważną przyczyną takiego stanu jest niska skuteczność programów wczesnej diagnostyki i leczenia (Joanna Didkowska i inni, Nowotwory złośliwe w Polsce w 1999 roku)

Szacunkowe skutki strategii PET w warunkach polskich

[1] Joanna Didkowska i inni, Nowotwory złośliwe w Polsce w 1999 roku

[2] Markus Dietlein, et al., Eur. J. Nucl. Med. 27 (2000) 1598, Zdarzsnieffectiveness of FDG-PET for management Bf postentially isperable hon-smithe cell lung cancer: priority for a PET-based strategy after nodal-negative CT results Zarejestrowane przypadki raka płuc (1999) [1] [2] J. Scott Sloka, et al., Med. Sci. Monit. 10 (2004) MT73-80. 19183 Ligzbanergeenkeress Sposition emission tomography 977 non-small Cell lung 14387 Znanai Bostep & Canadagrupie z NSCLC w wyniku 037 7098 370 zastosowania strategii z PET [4] 31 S.S. Gambhir e al., The Journal of Nuclear Medicine **37** (1996) 1428 Universion appears in the Cost Effectivenees of FDG-PEP in the 1295w staling asta mania strates is 7 NSELC?] 1598 Unikniecie zabiegu badania histologicznego w grupie S.S. Gambhir et al., The Journal of Nuclear Medicine **42** (2001) 1S 4460 *A Tabulated Summary of the FDG PET Literature,* Ograniczenie liczby przypadków śmiertelnych w 0.0021 30 2 grupie z NSCLC w wyniku zastosowaniastrategii z`PET [2]

Szacunkowe skutki finansowe w warunkach polskich

Szacunkowy koszt wybranych procedur

Sity

V UNIVE	Procedure	Cost from [1]	Cost in Poland
NNCI		[\$]	[EUR]
NN MI	CT scan of chest	700	580
NJNCI,	PET scan of chest	1 200	1 000
<i>zej t</i> t	biopsy	3 000	700
L. J	medical surgery	30 000	7 000

	a a. 1 1 .	TTT	TT
	Nzotliński	Narsaw	1 niversity
∠.	$D_2 C_{fillishi}$	<i>r arsarv</i>	Oniversity

Procedura (na 1000 przypadków)	Koszt
1. Badanie PET	1 000 000
2. Badanie CT	580 000
3. PET-CT (1-2)	420 000
 Zysk z uniknięcia zabiegów chirurgicznych 	630 000
5. Zysk z uniknięcia biopsji	217 000
6. Zysk w wyniku uniknięcia zbędnych zabiegów 4+5)	847 000
7. Zysk netto (6–3)	427 000

 TABLE XI LIST OF THE APPROXIMATE³⁴ COSTS OF SOME CURRENT

 PROCEDURES AND/OR EXAMINATIONS FOR CANCER SCREENING.

 Mammogram
 \$80-\$200

	Mammogram	\$80-\$200
-	Sonogram	\$250-400
Breast cancer	MRI (with contrast ag.)	\$900-1400
	Biopsy	\$500-700
	FOBT	\$20-65
a 1	Barium Enema (Fluoro)	\$600-800
Colon cancer	Sigmoidoscopy	\$300-500
	Colonoscopy	\$1500-2000
Cynocological	Uterine cervix: Pap smear	\$40-100
Gynecological	Sonogram	\$450-600
cancer	Uterus corpus (biopsy)	\$500-1500
	Chest X-ray	\$50-300
•	Broncoscopy	\$1200-1600
Lung cancer	CT chest (with contrast)	\$800-1200
	Biopsy	\$700-1200
	Digital Rectal test	~\$100
~	Prostate Specific Antigen	\$25-120
Prostate cancer	Sonogram	\$400-500
	Biopsy	\$500-600
Lymphome	CT (with contrast ag.)	\$600-1200
Lymphoma	MRI (with contrast ag.)	\$1800-4000
cancer	Biopsy	\$1000-1600
Proin concor	MRI (with contrast ag.)	\$1000-2500
Drain cancer	CT (with contrast ag.)	\$500-1800

S

Szacunkowe skutki strategii PET w warunkach polskich

Zdarzenie	Pr-ństwo	Liczba /1000 przyp.	Liczba
Zarejestrowane przypadki raka płuc (1999) [1]			19183
Liczba przypadków z NSCLC [2]	0.75	750	14387
Zmiana postępowania w grupie z NSCLC w wyniku zastosowania strategii z PET [4]	0.37	370	7098
Uniknięcie zabiegu chirurgicznego w grupie z NSCLC w wyniku zastosowania strategii z PET [3,2]	0.09- 0.11	90-110	1295- 1598
Uniknięcie zabiegu badania histologicznego w grupie z NSCLC w wyniku zastosowania strategii z PET [2]	0.31	310	4460
Ograniczenie liczby przypadków śmiertelnych w grupie z NSCLC w wyniku zastosowaniastrategii z`PET [2]	0.0021	2	30

Szacunkowe skutki finansowe w warunkach polskich

Procedura	Koszt wg M. Dietlein, Niemcy	Koszt w warunkach Polskich
Konwencjonalne CT	585 EUR	200
WB-PET	1227	4000
Biopsja	1200	700
Mediastinoscopy	1138	5000
Zabieg chirurgiczny	11656	7000
Paliatywna radiacja	11378	1800

Szacunkowe skutki finansowe w warunkach polskich

Procedura	Koszt w warunkach Polskich
	/1000 przypadków
Koszt badania PET (*1000)	4 000 000
Koszt badania CT (*500)	200 000
Koszt netto PET	3 800 000
Koszt zabiegów chirurgicznych (0.09)	-630000
Koszt histologii (0.31)	-217 000
Wzrost paliatywna radiacja (0.06)	+108 000
Koszt mediastinoscopy	-1 550 000
(0.31)	
Zysk netto	2 072 000

Szacunkowe skutki finansowe w warunkach polskich

Zarejestrowane przypadki raka płuc (1999) – 19183 Liczba przypadków z NSCLC (0.75)

Clinical base : 72 patients with NSCLC

After PET study:

- 5 patients escaped from lobectomy (7%)
- in 3 patients lobectomy was performed although PET study was negative
- 10 patients escaped from biopsy
- 11 patients non surgical treatment
- 7 patients without metastatic disease
- 36 patients standard lobectomy

P E T		in Poland
•		Lung
in		19 183/72*32 760 =
0	Economical	8 379 134 EUR
Ν	aspect	
С		All car
0		
L		100 000/72*32 760
0		
G		45 500 000 EUI
Y		

in Świętokrzyski region cancer 773/72*32 760 351 715 EUR ncer cases 5 000/72*32 760 _ 2 275 000 EUR

Summary of evidence for FDG PET in lung cancer

	diagnosis		staging		recurrence		monitoring	
							response	
	(1255)		(4238)		(417)		(200)	
	PET	СТ	PET CT		PET	CT	PET	СТ
Sens	.96	.67	.83	.64	.98	.72	.94	.72
Spec	.73		.91	.74	.92	.95	.90	.95
Acc	.90		.82	.68	.96	.84	.96	.84
MGMT			.37(1565)					

(total number of patients)

37% change was estimated in management effect based on 1565 patient studies

Summary of evidence for FDG PET in breast cancer

	diagnosis		staging		recurrence		monitoring	
							response	
	(430)		(1678)		(341)		(178)	
	PET	СТ	PET CT		PET	СТ	PET	СТ
Sens	.91		.91	.63	.80	.90	.81	
Spec	Spec .93		.88	.96	.85	.96	.96	
Acc .95		.90	.90	.82	.89	.92		
MGMT 1.0(6)		.24(111)		.40(23)				

(total number of patients)

24% change was estimated in management effect based on 111 patient studies.

Summary of evidence for FDG PET in cervical, uterine and ovarian cancer

	diagnosis		staging		recurrence		monitoring	
							response	
	(266)	(138)		(357)			
	PET	CT	PET	CT	PET	CT	PET	СТ
Sens	.66		.86	.79	.88	.76		
Spec .77 .67		.67	.82	.59	.90	.75		
Acc	.77	.76	.87	.72	.87	.43		
MGMT				.17(30)				

Summary of evidence for FDG PET in colorectal cancer

	diagnosis		staging		recurrence		monitoring	
							response	
			(254)		(2244)		(30)	
	PET	СТ	PET CT		PET	CT	PET	СТ
Sens			.85	.34	.94	.79	1.0	
Spec	Spec		.71	.92	.87	.73	.90	
Acc			.94	.81	.94	.87	1.0	
MGMT		.36(236)		.32(915)				

Summary of evidence for FDG PET in prostate cancer

	diagnosis		staging		recurrence		monitoring	
							response	
			(244)					
	PET	CT	PET	CT	PET	CT	PET	СТ
Sens			.57					
Spec			1.0					
Acc								
MGMT								

- statistical parameters are very scarce in literature
- management change data for staging are not directly available from the literature

Summary of evidence for FDG PET in gastroesophageal cancer

	diagnosis		staging		recurrence		mon	itoring
							response	
	(545)		(452)		(41)		(14)	
	PET	CT	PET	CT	PET	CT	PET	CT
Sens	.80	.68	.73	.50	1.0		1.0	
Spec	.95	.81	.90	.69	.43			
Acc	.86	.73	.83	.68	.73		.46	
MGMT	.14(99)		.20(229)		.40(2	3)		

Summary of evidence for FDG PET in bladder cancer

日間に

	diagnosis		staging	recurrence	monitoring		
					response		
			(110)				
	PET	CT	PET CT	PET CT	PET CT		
Sens			.76				
Spec			.87				
Acc			.83				
MGMT			.17(12)				

Summary of evidence for FDG PET in melanoma

	diagnosis		staging		recurrence		monitoring	
							response	
			(1642)					
	PET	СТ	PET	CT	PET	СТ	PET	СТ
Sens			.83	.88				
Spec			.91	.75				
Acc			.91	.80				
MGMT			.26(283)					

How many patients should expect change in management?

Poland		Swiętokrzyski		Poland		Swietokrzyski			
male	Total	MGMT	Total	MGMT	ale	Total	MGMT	Total	MGMT
Lung	15325	8463	661			10031	3593	407	145
Colorectal	5777	3058	237						
Gastroeso	4694	1380	202	Cervica Uterine	al and	10483	3310	433	134
				Colored	ctal	5252	2780	240	127
Prostate	3937	~1000	265	Lung ⁷⁰		2050	2102	112	62
Bladder	3475	~1000	187		aconhagal	3030	2105	112	02
Melanoma	3058	QQ4	181		sophager	2291	674	99	30
	36266	15895	1733	738		31915	12460	1291	498
		10070							

39%

Ile winno być PET'ów w Polsce

Fig. 3. The clinical algorithm for the accurate staging of lung cancer, NSCLC, Non-small cell lung cancer; CT, computed tomography; PET, positron emission tomography

M. Bedford, M. Maisey, Eur. J. Nucl. Med. Mol. Imag. 31 (2004) 208

Ekonomika zastosowania PET

CT

68%

20

statystyka w leczeniu chorób

Koszty leczenia

koszty leczenia

- ograniczenie liczby testów medycznych do pojedynczego badania
- obrazowanie wielu organów ciała w pojedynczym badaniu
- częste przypadki diagnozy choroby dużo wcześniej niż to umożliwiają inne techniki
- monitorowanie rozwoju choroby i procesu leczenia
- redukcja nieefektywnej lub niekoniecznej interwencji chirurgicznej
- redukcja czasu leczenia i hospitalizacji

Koszty leczenia

końcowy wynik ekonomiczny wg oszacowań Z. Szeflińskiego

w oparciu o P.A.Valk et al. Cost-Efectiveness of PET Imaging in Clinical Oncology, Nuclear Medicine&Biology **23** (1966) 737-743

zastąpienie 72 'tradycyjnych' badań onkologicznych diagnostyką PET przynosi zysk netto ~33 000 EUR

2000 badań daje oszczędności ~900 000 EUR

Tracer	Activity (mCi) per scan	Critical organ	Major organs absorbed dose (mrad/mCi)	Critical organ absorbed dose (mrad/mCi)	
¹⁵ O water	25	blood, heart, lungs, kidney	1.5-2	3–6	
¹⁸ F FDG ¹⁸ F fluorodopa ⁸² Bb	10 2 25	bladder bladder heart, kidneys	50–160 20–60 1.5–2	200440 2600 1520	

Table 4 Radiation absorbed doses for PET radiotracers

1 rad = 0.01 Gy (J/kg)

dla e⁺ i e⁻ 1Gy=1Sv W polskim prawie atomowym dawka graniczna dla ogółu ludności 50 mSv/rok Organizacja diagnostyki PET w Świętokrzyskim Centrum Onkologii w Kielcach

Zakład Medycyny Nuklearnej

SPECT

scyntygrafia planarna i tomograficzna

 badania strukturalno-topograficzne czynnościowe całego ciała

planowane:limfoscyntygrafiaimmunoscyntygrafia

PET

•badania strukturalne czynnościowe całego ciała planowane zastosowania w •onkologii •kardiologii •neurologii z wykorzystaniem izotopów ¹⁸F, ¹¹C, ¹³N, ¹⁵O

Umiejscowienie oddziału PET

i planowane jego części

- cyklotron
- radiochemia
- diagnostyka
- analiza danych

Cyklotron:

- MINItrace (produkcja FDG)
- typu ~10/5 MeV p/d
- typu ~18/9 MeV p/d

możliwa wiązka zewnętrzna

• typu ~30/15 MeV p/d J

standardowa produkcja ¹¹C, ¹³N, ¹⁵O, ¹⁸F

inne izotopy promieniotwórcze dla PET i SPECT

możliwości

Radiochemia:

 komory gorące wraz z układami do syntezy koniecznych molekuł, np.:

¹¹C- CO₂, CH₃I, HCN, octan, ...
¹³N - NH₃, ...
¹⁵O - O₂, CO, CO₂, H₂O, ...
¹⁸F - FDG, F₂, ...

- układy porcjowania radiofarmaceutyków
- produkcja radioizotopów dla innych użytkowników

Diagnostyka:

- możliwości
- skaner PET/CT
- skaner PET

Analiza danych:

- obrazowanie z wykorzystaniem nowoczesnych algorytmów analizy sygnałów
- układ współpracujący w sieci z innymi metodami diagnostyki (image fusion) w celu precyzyjnego planowania leczenia

Wiązka zewnętrzna przeznaczona do:
a) badań naukowych
b) produkcji specyficznych izotopów promieniotwórczych

Wiązka zewnętrzna: wewnątrz pomieszczenia cyklotronu - krótka

w niezależnym pomieszczeniu - długa

Zadania

• kliniczne - diagnostyczne

 naukowe radiochemiczne fizyczne farmakologiczne

możliwe dzięki współpracy IChTJ - Warszawa ŚLCJ - Warszawa AŚ (IF, IB, ICh) - Kielce IPJ - Warszawa

