

IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Medycznej IF AŚ

 $V = ZZ'e^2 / r = C / r$ $d\sigma$ $=(2mC)\frac{1}{\alpha^4}$ $\left(\overline{d\Omega}\right)_{g}$ $\overline{4E}$ ${\mathcal{Y}}$ 4 sin

2

Podstawowe wiadomości o budowie materii

Podstawowe wielkości charakteryzujące jądro

- promień jądra
- masa jądra i jego energia wiązania
- moment magnetyczny
- moment elektryczny

Podstawowe wielkości charakteryzujące jądro

- promień jądra
- masa jądra i jego energia wiązania
- moment magnetyczny
- moment elektryczny

Co to jest promień jądra?

- zgodnie z zasadą nieoznaczoności nie istnieje ostro zdefiniowany brzeg jądra
- promień jądra, charakteryzujący się pewnym rozmyciem, należy powiązać z rozkładem gęstości materii jądrowej danym przez kwadrat funkcji falowej jądra |Ψ|²
- radialny przebieg funkcji Ψ zależy oczywiście od potencjału, w którym znajduje się cząstka

Ponieważ jak pokazują wyniki eksperymentów jądra mają stosunkowo dobrze określone brzegi to potencjał odpowiedzialny za wiązanie jąder ma dość dobrze określony, skończony zasięg.

Promień jądra

wielkość charakteryzująca rozkład jego gęstości

Pomiar tej wielkości trudny

• łatwy pomiar rozkładu ładunku elektrycznego w jądrze

Z dużą dokładnością spełniony jest warunek, że rozkład gęstości protonów pokrywa się z rozkładem gęstości jądra

Metody określania promieni jądrowych:

- pierwsze wyniki z rozpraszania cząstek α
- dokładniejsze wyniki z rozpraszania elektronów (λ_e =0.4 fm dla elektronów o E=500 MeV)
 - wnikają do jądra, gdyż nie podlegają siłom jądrowym i pozwalają na dość dokładny pomiar rozkładu ładunku

 dla dowolnego rozciągłego rozkładu gęstości ładunku w jądrze ρ(r) można obliczyć odpowiadający mu rozkład kątowy kulombowsko rozproszonych elektronów

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_p F^2(q)$$

gdzie czynnik po prawej stronie jest odpowiednim różniczkowym przekrojem czynnym dla ładunku punktowego, a funkcja $F^2(q)$ zależy od rozkładu gęstości ładunku $\rho(r)$, a q oznacza zmianę pędu podczas zderzenia

$$F^{2}(q) = \left|\frac{1}{e}\int\rho(r)e^{(i/\eta)q\cdot r}d\tau\right|^{2}$$

F(q) – to czynnik kształtujący (formfaktor)

Rozkłady kątowe dla elastycznego rozpraszania elektronów na jądrach Cu i Au obliczone dla punktowego i równomiernego rozkładu ładunku.

Rozkłady kątowe dla elastycznego rozpraszania elektronów na jądracz C.

 $10^{-15} \text{ m} - 1 \text{ femtometr} - 1 \text{ fm}$ 1 Fermi - 1 Fm **1 fm = 1 Fm**

rozkład gęstości materii jądrowej - rozkład Fermiego

$$\rho(r) = \rho_o \frac{1}{1 + e^{(r - R_{1/2})z}}$$

Definicje promienia jądra

średni promień kwadratowy

$$R_m^2 = \left\langle r^2 \right\rangle = \int_0^\infty r^2 \rho(r) 4\pi r^2 dr$$

2

promień równoważny
(jednorodnie naładowanej kuli)

$$R_e = 1.73R_m$$

$$\left\langle r^{2}\right\rangle = \frac{5}{5}K$$

• dla A>20

$$\rho_o = \rho(0) = 0.17 \frac{Ze}{A} fm^{-3}$$
 $t = 2.4 fm$ $R_s = 1.128 A^{1/3} fm$

$$R_{1/2} \sim R_s - 0.89 A^{-1/3}$$
 fm $R_e \sim R_s + 2.24 A^{-1/3}$ fm

To jest jedyny promień, który na mocy definicji jest proporcjonalny do A^{1/3}

$$r_o = (1.128 \pm 0.1) \ 10^{-15} m$$

$$R = r_o A^{1/3}$$

$$0^{-15}$$
 m - 1 femtometr - 1 fm
1 Fermi - 1 Fm
1 fm = 1 Fm

 $\rho \sim 10^{14} \text{ g/cm}^3$ $\rho(0) \sim 0.17 \text{ nukleonu/fm}^3$

		śred	dnica Ziemi		
ivi dal jqd	ro atom	człowiek	Ziemia- rok Stońce świetlny Wszechświat		
orginal and	eog wis yg	oyelk bed along	olementar	Z CZ2810	onowej) pra
10 ⁻²⁰	10-10	10 ⁰	10 ¹⁰ zmiar [m]	10 ²⁰	10 ³⁰

Metody określania promieni jądrowych:

- na podstawie widma atomów mionowych
- mion cząstka ~207 razy cięższa od elektronu
- mion cząstka mająca własności podobne jak elektron
- mion cząstka produkowana w akceleratorach może być wychwytywana przez jądro jak elektron, tworząc atom mionowy
- atomy mionowe mają swój własny układ termów, wynikający z rozwiązania równania Schrödingera dla mionu w polu atomu

- schwytany przez jądro mion przechodzi stopniowo do coraz niższych stanów energetycznych, osiągając powłokę K
- promień orbity Bohra $r = \eta^2 / m_r Z e^2$ zależy od masy zredukowanej
- średnica orbity mionu jest około 200 razy mniejsza od średnicy orbity elektronowej
- w miejscu jądra występują ogromne gęstości ładunku ~200³=8*10⁶ razy większe niż w zwykłym atomie elektronowym

 nakładanie się dodatniego ładunku jądra i ujemnego ładunku powłoki powoduje przesunięcie poziomów energetycznych w powłoce równe:

$$\Delta E_V = \int \left[\varphi_1(r) \rho_1(r) - \varphi_2(r) \rho_2(r) \right] 4\pi r^2 dr$$

- φ oznacza tu potencjał elektryczny w miejscu jądra pochodzący od powłoki
- interesujący wpływ rozkładu ładunku w jądrze na linię widmową, tzn. zmiana energii ΔE dla dwóch różnych konfiguracji powłoki 1 i 2 wynikająca z istnienia rozkładu gęstości ładunku $\rho(r)$

$$\Delta E_V = \int \left[\varphi_1(r) - \varphi_2(r) \right] \rho(r) 4\pi r^2 dr$$

 potencjał φ(r) wewnątrz jednorodnie naładowanej kuli o gęstości ładunku L(0) jest równy

$$\varphi(r) = \frac{2}{3}L(0)r^2$$

przy wyborze warunku $\varphi(0)=0$

 korzystając z powyższego i oznaczając przez L(0) gęstość ładunku powłoki w jądrze, stałą w obrębie jądra, otrzymujemy

$$\Delta E = \frac{2}{3}\pi \left[L_1(0) - L_2(0) \right] \int r^2 \rho(r) 4\pi r^2 dr = \frac{2}{3}\pi \Delta L(0) R_m^2$$

gdzie R_m jest średnim promieniem kwadratowym

• efekt rozciągłości został zmierzony w helu mionowym dając dla promienia cząstki α wartości $R_m = 1.6733(30)$ fm z dokładnością 0.2%.

Podstawowe wielkości charakteryzujące jądro

- promień jądra
- masa jądra i jego energia wiązania
- moment magnetyczny
- moment elektryczny

masa jądra

- nie zawiera nieoznaczoności

Pomiar:

 metody jonowo-optyczne na podstawie odchylenia wiązki jonów w ukształtowanych polach elektrycznych i magnetycznych - dokładności ~10⁻⁵%

Spektrograf masowy Astona

- metody spektroskopii jądrowej

na podstawie energii rozpadu α lub β , w którym spośród jąder macierzystego i pochodnego jedno ma nieznaną masę.

- metody reakcji jądrowych oparte na pomiarze energii odpowiednich reakcji jądrowych.

Używane jednostki:

 $m_u = (1/12) m(^{12}C)$

 $1 m_u = 1u = 1.66056*10^{-24}g = 931.5 MeV/c^2$

Masy podstawowych składników: $m_p/m_e = 1836.15152 \pm 0.38$

Wyniki pomiarów mas jąder pozwoliły stwierdzić, że:

 masa jądra o liczbie nukleonów A jest nieco mniejsza niż suma mas swobodnych A nukleonów

"defekt masy" - energia wiązania uwalniana podczas łączenia nukleonów w jądro

energia wiązania

ilość energii, jaką należy zużyć na rozsunięcie wszystkich nukleonów tworzących jądro

Energia wiązania nuklidu $B(Z,N)=Zm_{H}+Nm_{n}-M(Z,N)$

Masa jądra i nuklidu są związane poprzez $M_j(Z,N)=M(Z,N)-Zm_e+W_e$

energia wiązania wszystkich elektronów

Energia wiązania jądra $B_j(Z,N)=Zm_p+Nm_n-M_j(Z,N)$

Otrzymujemy więc $B_j(Z,N)=B(Z,N)+Zw_H-W_e$ energia wiązania elektronu w ¹H

zwykle przyjmuje się $B_j(Z,N) \propto B(Z,N)$

26

Energia wiązania

Δm

Zależność B/A vs A

- własności sił działających między nukleonami
- energia wiązania jest proporcjonalna do liczby par
- **jądra magiczne** Z lub N = 2, 8, 20, 28, 50, 82, 126

Abundancja nuklidów we Wszechświecie

Siły jądrowe:

- działają między dwoma nukleonami
- mają własność wysycania się
- mają krótki zasięg działania
- dla większych odległości są opisane w przybliżeniu przez potencjał Yukawy

$$V(r) = g \frac{1}{r} e^{-\frac{m_{\pi}c}{\eta}}$$

 $\mathcal{M}_{\pi}\mathcal{C}$

Energia wiązania jąder w funkcji Z i N. Stabilne są tylko jądra położone ponad górną powierzchnią rysunku. Przypuszczalna wyspa stabilności dla N~190 powinna zawierać jądra superciężkie.

Energia separacji nukleonu:

 $S_n(Z,N)=M(\overline{Z,N-1})+M_n-M(\overline{Z,N})=B(\overline{Z,N})-B(\overline{Z,N-1})$

 $S_{p}(Z,N)=M(Z-1,N)+M_{p}-M(Z,N)=B(Z,N)-B(Z-1,N)$

Energia pairing'u $\delta_n(Z,N)=S_n(Z,N)-S_n(Z,N-1)$

- gładka funkcja
- silne skokowe zmiany dla jąder o Z lub N 2, 8, 20, 28, 50, 82, 126

Podstawowe wielkości charakteryzujące jądro

- promień jądra
- masa jądra i jego energia wiązania
- moment magnetyczny
- moment elektryczny

A

Ζ

- określa własny moment pędu cząstki (np. elektronu) lub układu cząstek (np. jądra)
- niezerowa wartość spinu oznacza, że obiekt posiada moment magnetyczny
- wartość spinu wyrażamy w jednostkach η
- spin elektronu wynosi ½ i jego ustawienie w przestrzeni nie jest dowolne – mówimy tu o kwantyzacji przestrzennej
- **całkowity** (kwantowy) **moment pędu układu** jest sumą własnych momentów pędów (spinów) składników i orbitalnych momentów pędów np. dla układu dwóch cząstek zachodzi $J = \beta_1 + \beta_2 + l_{12}$

obowiązuje zasada zachowania

$$X \longrightarrow_{Z+1}^{A} Y + e^{-} + ?$$

$$\stackrel{\sim}{\rightarrow} \stackrel{\sim}{\nu}_{e}$$

V = const

W fizyce wyróżniamy:

- bozony, cząstki o spinie całkowitym (s=0,1,2,3...)
- fermiony, cząstki o spinie połówkowym (s=1/2, 3/2, 5/2 ...)
- liczba możliwych stanów wektora spinu s wynosi 2s+1
- liczba możliwych stanów wektora momentu orbitalnego I wynosi 21+1

- spin protonu i neutronu wynosi ¹/₂
- ich spiny i orbitalne momenty pędu składają się całkowity moment pędu jądra I, zwany zwyczajowo spinem jądra
- ponieważ orbitalny moment pędu przyjmuje wartości tylko całkowite, dla jąder o parzystych A oczekujemy całkowitej wartości spinu, a dla jąder o nieparzystych A wartości połówkowej
- moment pędu jądra I jest związany z pewnym momentem magnetycznym μ_I
- moment μ_I jądra jest znacznie mniejszy od momentu magnetycznego powłoki elektronowej ponieważ moment magnetyczny pojedynczego nukleonu jest mniejszy od momentu magnetycznego elektronu.

$$\mu = \frac{e\tilde{I}}{2M} = \gamma \tilde{I} \qquad \gamma = \frac{\mu}{\tilde{I}}$$

 $\overline{\mu}_I = \gamma_I \eta I^*$

Ponieważ kwantowo moment pędu jest skwantowany, a jego liczbie kwantowej I odpowiada wartość spinu

$$\widetilde{I} = \eta_{\gamma} \sqrt{I(I+1)} = I^* \eta$$

36

pomiary momentu magnetycznego protonu wykazały, że należy przyjąć

$$\overline{\mu}_I = g\mu_o I^*$$

 $\mu_o = \gamma_I \eta = \frac{e\eta}{2M_p} \mu_o = 3.152 \times 10^{-12} \text{ eV/Gs}$

magneton jądrowy

$$\mu_I = \frac{\mu_I}{\mu_o} = g_{\sqrt{I(I+1)}}$$

Moment magnetyczny w magnetonach jądrowych

Zmierzyć możemy składową momentu magnetycznego wzdłuż osi wyróżnionej przez kierunek zewnętrznego pola magnetycznego

dipolowy moment magnetyczny jądra to maksymalna wartość tego rzutu, czyli

$$\mu = gI$$

dipolowe momenty magnetyczne nukleonów

 $\mu_p = 2.79 \mu_o$ i $\mu_n = -1.91 \mu_o$.

Metody pomiaru momentu magnetycznego i spinu jądra

- idea O. Sterna i W. Gerlacha, która wykorzystuje zachowanie się dipola magnetycznego w zewnętrznym, niejednorodnym polu magnetycznym
 - I. Metoda pomiaru oparta na liczbie składowych struktury nadsubtelnej
 - II. Metoda pomiaru oparta na względnej odległości składowych struktury nadsubtelnej
 - III. Metoda pomiaru oparta na pomiarze odchylenia wiązek atomowych i cząsteczkowych

I. Metoda pomiaru oparta na liczbie składowych struktury nadsubtelnej

 \rightarrow F F = I + Ji ma (I+J), (I+J-1), ..., |I-J|składowych

moment pędu atomu

moment pędu jądra

momentu pędu powłoki

 $<H_{J}>\sim 10^{5} \div 10^{7} \text{ Gs}$

multipletowość rozszczepienia (2I+1) - dla I≤J (2J+1) - dla J<I

Oddziaływanie momentu magnetycznego jądra z polem wytworzonym przez elektrony atomu. Z uwagi na małą wartość μ, oddziaływanie to jest niewielkie i związane z nim rozszczepienie jest niewielkie i dlatego mówimy o nadsubtelnej strukturze linii widmowych.

spin jądra wynika bezpośrednio z liczby składowych multipletu, lecz tylko dla I≤J 41

II. Metoda pomiaru oparta na względnej odległości składowych struktury nadsubtelnej

Oddziaływanie momentu magnetycznego jądra z polem magnetycznym wytworzonym przez elektrony atomu charakteryzuje energia $E = \mu_I \langle H_J \rangle \cos(\overline{I}, \overline{J})$

$$< H_{J} > \sim 10^{5} \div 10^{7} \text{ Gs}$$

$$\mu_{I} = g\mu_{o}\sqrt{I(I+1)} \langle H_{J} \rangle = H_{v}\sqrt{J(J+1)} \qquad \cos(I,J) = \frac{F(F+1) - I(I+1) - J(J+1)}{2\sqrt{I(I+1)J(J+1)}}$$

$$E = \frac{g\mu_o H}{2} [F(F+1) - I(I+1) - J(J+1)]$$

dalsze rozszczepienie struktury nadsubtelnej w zewnętrznym polu magnetycznym

słabym (efekt Zeemana) i
silnym (efekt Backa-Goudsmita)

pozwala na niezależny pomiar spinu jądra

W słabym polu magnetycznym I oraz J pozostają sprzężone w wektor F i każdy poziom rozszczepia się na (2F+1) składowych

W silnym polu I oraz J ulegają rozprzężeniu – ponieważ powłoka ma znacznie większy moment magnetyczny niż jądro, poszczególne poziomy szeregują się w grupy o jednakowych m_i

- III. Metoda pomiaru oparta na pomiarze odchylenia wiązek atomowych i cząsteczkowych
- W zewnętrznym polu magnetycznym na ciało o momencie magnetycznym działa $M=\mu \times H$ tj. $M=\mu Hsin\Theta$.
- Stara się on ustawić wektor µ równolegle do H. Związany z tym przyrost momentu pędu to

 $\Delta I = M \Delta t = \mu H \sin \Theta \Delta t$ (jest równoległy do M)

$$\Delta \varphi = \frac{\Delta I}{I \sin \Theta} = \frac{\mu H \Delta t}{I}$$

Otrzymuje się zatem precesję o częstości $\Delta \sigma$ μH

 $\omega_L = \frac{\Delta \varphi}{\Delta t} = \frac{\mu H}{I}$ precesja Larmora

$$\omega_L = \frac{g\gamma HI}{I} = g\gamma H = g\frac{e}{2M}H$$

> Precesja Larmora momentu magnetycznego dookoła kierunku pola H

$$\omega_L = \frac{g\gamma HI}{I} = g\gamma H = g\frac{e}{2M}H$$

Jest ~10³ H, więc w polu o natężeniu 10³ Oe ma wartość ~1MHz, czyli leży w zakresie fal radiowych.

z precesją Larmora związana jest dodatkowa energia

$$E_{L} = \mu H \cos \Theta$$

lecz $\mu H = \omega_{L} I$
$$E_{L} = \omega_{L} \eta \sqrt{I(I+1)} \frac{m_{I}}{\sqrt{I(I+1)}} = \omega_{L} \eta m_{I}$$

gdzie m_I jest magnetyczną liczbą kwantową odpowiadająca przestrzennemu kwantowaniu wektora spinu jądra

$$E_L = \omega_L \eta_V \sqrt{I(I+1)} \frac{m_I}{\sqrt{I(I+1)}} = \omega_L \eta m_I$$

Odpowiednio dla różnych możliwych wartości m_I (magnetycznej liczby kwantowej wektora spinu jądra) otrzymujemy (2I+1) energetycznych stanów precesji odległych od siebie o $h\omega_L$.

Jeśli jądro umieścimy w stałym polu H i poddamy je działaniu zmiennego pola magnetycznego o częstości ω_L , to może ono zaabsorbować z tego pola energię zmieniając orientację i przechodząc do wyższego stanu energetycznego. Znając wartość H i mierząc ω_L , przy której następuje najsilniejsza absorpcja energii możemy wyznaczyć g i μ .

Schemat rezonansowej metody wiązek atomowych do pomiaru momentów magnetycznych jąder atomowych. Wzory Schmidta dla momentów magnetycznych jąder

Z-parzyste

$$\mu = \begin{cases} \frac{J^2 - 1.293}{J + 1} \mu_o \\ (J + 2.293) \mu_o \end{cases}$$

gdy J=l-1/2

gdy J=l+1/2

Z-nieparzyste

$$\mu = \begin{cases} -1.913\mu_o \\ \frac{1.913J}{J+1}\mu_o \end{cases}$$

gdy J=*l*-1/2

gdy J=*l*+1/2

IZOSpin (spin izotopowy)

- wprowadzony przez Heisenberga, by traktować proton i neutron jako dwa stany cząstki nazwanej nukleon o spinie izotopowym 1/2
- proton ma wartość $I_3 = +1/2$
- neutron ma wartość $I_3 = -1/2$

Parzystość

- brak odpowiednika w fizyce klasycznej
- liczba kwantowa opisująca symetrię zwierciadlaną funkcji falowej
- w równaniu Schrödingera funkcja radialna jest niezmiennicza względem odbicia R(r)=R(-r)
- funkcje sferyczne będące funkcjami własnymi momentu pędu I podlegają transformacji

$$Y_l^m(\pi-\vartheta,\varphi+\pi) = (-1)^l Y_l^m(\vartheta,\varphi)$$

- parzystość stanu $\pi = \pm 1 = (-1)^l$
- parzystość podlega zachowaniu podobnie jak moment pędu

Podstawowe wielkości charakteryzujące jądro

- promień jądra
- masa jądra i jego energia wiązania
- moment magnetyczny
- moment elektryczny

Moment elektryczny

Z

W pewnym punkcie leżącym w odległości R od początku układu współrzędnych pole pochodzące od rozkładu ładunków opisać możemy poprzez potencjał, będący sumą potencjałów poszczególnych ładunków.

$$V(\hat{R}) = \sum_{i} \frac{e_{i}}{|\hat{R} - \hat{r}_{i}|} = \sum_{i} \frac{e_{i}}{\sqrt{(X - x_{i})^{2} + (Y - y_{i})^{2} + (Z - z_{i})^{2}}}$$
$$= \sum_{i} v_{i}(X, Y, Z; x_{i}, y_{i}, z_{i})$$

Х

*e*₆

R-r;

 $\mathbf{r}_{i}(\mathbf{x}_{j},\mathbf{y}_{j},\mathbf{z}_{j})$

W otoczeniu początku układu wyrażenia v_i jako funkcje współrzędnych $x_i y_i z_i$ możemy rozwinąć w szereg Taylora

rozwinięcie w szereg Taylora

$$\upsilon_{i} = \left(\upsilon_{i}\right)_{o} + \left[\left(\frac{\partial\upsilon_{i}}{\partial x_{i}}\right)_{o}x_{i} + \left(\frac{\partial\upsilon_{i}}{\partial y_{i}}\right)_{o}y_{i} + \left(\frac{\partial\upsilon_{i}}{\partial z_{i}}\right)_{o}z_{i}\right] + \frac{1}{2}\left[\left(\frac{\partial^{2}\upsilon_{i}}{\partial x_{i}^{2}}\right)_{o}x_{i}^{2} + \left(\frac{\partial^{2}\upsilon_{i}}{\partial y_{i}^{2}}\right)_{o}y_{i}^{2} + \left(\frac{\partial^{2}\upsilon_{i}}{\partial z_{i}^{2}}\right)_{o}z_{i}^{2} + 2\left(\frac{\partial^{2}\upsilon_{i}}{\partial x_{i}\partial y_{i}}\right)_{o}x_{i}y_{i} + 2\left(\frac{\partial^{2}\upsilon_{i}}{\partial y_{i}\partial zi}\right)_{o}y_{i}z_{i} + 2\left(\frac{\partial^{2}\upsilon_{i}}{\partial z_{i}\partial x_{i}}\right)_{o}z_{i}x_{i}\right] + \dots\right]$$

Obliczając pochodne dla wartości współrzędnych $x_i=y_i=z_i=0$ i wstawiając do wyrażenia na V(R), otrzymamy

$$V(X,Y,Z) = \frac{1}{R} \sum_{i} e_{i} + \frac{1}{R^{2}} \left(\frac{X}{R} \sum_{i} e_{i} x_{i} + \frac{Y}{R} \sum_{i} e_{i} y_{i} + \frac{Z}{R} \sum_{i} e_{i} z_{i} \right) + \frac{1}{2R^{3}} \left[\left(3\frac{X^{2}}{R^{2}} - 1 \right) \sum_{i} e_{i} x_{i}^{2} + \left(3\frac{Y^{2}}{R^{2}} - 1 \right) \sum_{i} e_{i} y_{i}^{2} + \left(3\frac{Z^{2}}{R^{2}} - 1 \right) \sum_{i} e_{i} z_{i}^{2} + 6\frac{XY}{R^{2}} \sum_{i} e_{i} x_{i} y_{i} + 6\frac{YZ}{R^{2}} \sum_{i} e_{i} y_{i} z_{i} + 6\frac{ZX}{R^{2}} \sum_{i} e_{i} z_{i} x_{i} \right] + \dots$$

Występujące sumy zależą tylko od rozkładu ładunków

moment monopolowy Q_o -skalar

moment dipolowy Q₁ -wektor

$$(Q_1)_x = \sum_i e_i x_i$$
 $(Q_1)_y = \sum_i e_i y_i$ $(Q_1)_z = \sum_i e_i z_i$

moment kwadrupolowy Q₂ -tensor symetryczny

$$(Q_2)_{xx} = \sum_i e_i x_i^2$$
 $(Q_2)_{yy} = \sum_i e_i y_i^2$ $(Q_2)_{zz} = \sum_i e_i z_i^2$

$$(Q_2)_{xy} = (Q_2)_{yx} = \sum_i e_i x_i y_i$$
 $(Q_2)_{yz} = (Q_2)_{zy} = \sum_i e_i y_i z_i$

$$(Q_2)_{zx} = (Q_2)_{xz} = \sum_i e_i z_i x_i$$

Określone układy ładunków posiadają określone momenty elektryczne

- moment wyłącznie monopolowy posiada ładunek umieszczony w początku układu współrzędnych
- dwa ładunki przeciwnych znaków, leżące w równych odległościach od początku układu współrzędnych mają tylko elektryczny moment dipolowy
- czysty moment kwadrupolowy posiada np.. układ złożony z ładunku –2e w początku układu i dwóch ładunków +e po obu jego stronach w równych odległościach
- dla rozkładu ładunków symetrycznego względem osi z

 $(Q_1)_x = (Q_1)_y = 0$ i podobnie $(Q_2)_{xy} = (Q_2)_{yz} = (Q_2)_{zx} = 0$ natomiast $(Q_2)_{xx} = (Q_2)_{yy}$ Momenty elektryczne rozkładu ładunków opisują również oddziaływanie tego rozkładu z zewnętrznym polem elektrycznym o potencjale V(x,y,z).

Energia tego oddziaływania jest równa

$$E = \sum_{i} e_{i} V(x_{i}, y_{i}, z_{i})$$

co po rozwinięciu V na szereg Taylora i uwzględnieniu definicji momentów daje

$$E = V_0 Q_0 + \left[\left(\frac{\partial V}{\partial x} \right)_0 (Q_1)_x + \left(\frac{\partial V}{\partial y} \right)_0 (Q_1)_y + \left(\frac{\partial V}{\partial z} \right)_0 (Q_1)_z \right] + \frac{1}{2} \left[\left(\frac{\partial^2 V}{\partial x^2} \right)_0 (Q_2)_{xx} + \left(\frac{\partial^2 V}{\partial y^2} \right)_0 (Q_2)_{yy} + \left(\frac{\partial^2 V}{\partial z^2} \right)_0 (Q_2)_{zz} + \frac{1}{2} \left[2 \left(\frac{\partial^2 V}{\partial x \partial y} \right)_0 (Q_2)_{xy} + 2 \left(\frac{\partial^2 V}{\partial y \partial z} \right)_0 (Q_2)_{yz} + 2 \left(\frac{\partial^2 V}{\partial z \partial v} \right)_0 (Q_2)_{zx} + \dots \right]$$

Dla symetrycznego rozkładu ładunków względem osi z, korzystając z wyliczeń, że $(Q_1)_x = (Q_1)_y = 0$ i podobnie $(Q_2)_{xy} = (Q_2)_{yz} = (Q_2)_{zx} = 0$ natomiast $(Q_2)_{xx} = (Q_2)_{yy}$

i z twierdzenia Laplace'a dla pola zewnętrznego

$$\left(\frac{\partial^2 V}{\partial x^2}\right)_0 + \left(\frac{\partial^2 V}{\partial y^2}\right)_0 + \left(\frac{\partial^2 V}{\partial z^2}\right)_0 = 0$$

otrzymamy

$$E = V_0 Q_0 + \left(\frac{\partial V}{\partial z}\right)_0 (Q_1)_z + \frac{1}{2} \left(\frac{\partial^2 V}{\partial z^2}\right)_0 \left[(Q_2)_{zz} - (Q_2)_{xx} \right] + \dots$$

Oddziaływanie symetrycznego rozkładu ładunków z zewnętrznym polem elektrycznym opisują trzy wielkości:

- moment monopolowy Q₀
- moment dipolowy względem osi symetrii $(Q_1)_z$
- oraz wielkość, którą nazywamy momentem kwadrupolowym względem osi symetrii

$$Q_2 = 2[(Q_2)_{zz} - (Q_2)_{xx}]$$

kwadrupolowy moment można tez zapisać w postaci

$$Q_{2} = 2[(Q_{2})_{zz} - (Q_{2})_{xx}] = \sum_{i} e_{i} (3z_{i}^{2} - r_{i}^{2})$$

dla ciągłego rozkładu ładunków o gęstości p(x,y,z)

$$Q_o = \int \rho(x, y, z) d\upsilon$$

$$Q_1 = \int \rho(x, y, z) z dv$$

$$Q_2 = \int \rho(x, y, z) (3z^2 - r^2) d\upsilon$$

Dla osiowo symetrycznego rozkładu ładunków w kształcie elipsoidy obrotowej, o półosiach a i b i stałej gęstości ładunku równej $\rho = Q_0/4\pi a^2 b$

$$Q_{2} = \int \rho (3z^{2} - r^{2}) d\upsilon = \frac{4}{5} Q_{o} R^{2} \eta$$

gdzie średni promień rozkładu R=(a+b)/2

$$\eta = \frac{b-a}{R} = 2\frac{b-a}{b+a}$$

a) dla elipsoidy w kształcie cygara $\eta >0$ i Q₂>0 b) dla elipsoidy w kształcie dysku $\eta <0$ i Q₂<0

Zależność kwadrupolowych momentów elektrycznych od liczby protonów lub neutronów.

- występowanie liczb magicznych stanowiło podstawę modelu powłokowego
- duże wartości momentów w obszarach pomiędzy liczbami magicznymi doprowadziło do powstania modelu kolektywnego