Jet quenching in glasma

Alina Czajka

National Centre for Nuclear Research, Warsaw

in collaboration with M. E. Carrington and St. Mrówczyński

based on: PRC 105 (2022) 6, 064910, PRC 106 (2022) 3, 034904, EPJA 58 (2022) 1, 5

Jan Kochanowski University, Kielce, March 8th, 2023

< ロ > < 同 > < 回 > < 回 >

1 Introduction & Motivation

THEORY:

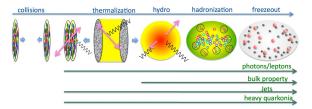
- 2 Nuclei before the collision MV model
- **3** Strongly interacting matter after the collision

RESULTS:

- 4 Characteristics of glasma
- **5** Energy losses of hard probes in glasma
- 6 Summary and conclusions

伺 ト く ヨ ト く ヨ ト

HEAVY-ION COLLISIONS:



Evolution of strongly interacting medium \rightarrow various approaches/models needed

HARD PROBES:

(produced in the early phase, propagate throughout all phases of the fireball evolution)

- electroweak probes
- colour probes: quarkonia, jets with heavy quarks, jets with light quarks and gluons

<ロト < 同ト < ヨト < ヨト -

Introduction - Initial Phase

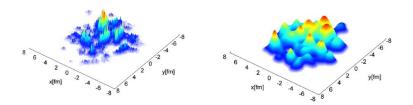
Many models to simulate the collision numerically

- * QCD-based approach: CGC formalizm * solving numerically Yang-Mills equations for gluon fields
- * IP-glasma

- * independent collection of nucleons
- * Monte-Carlo simulation using geomet-

(日)

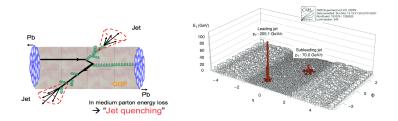
- rical properties of the system
- * MC Glauber model



Aim: to get initial conditions for subsequent hydrodynamic evolution - energy density and pressure profiles

Introduction - Hard Probes

 ${\rm high}\text{-}p_T$ ${\rm probes}$ - produced at the earliest time of the collision through hard interactions with large momentum transfer



Jet quenching \rightarrow energy loss of highly energetic partons because of the colour interactions

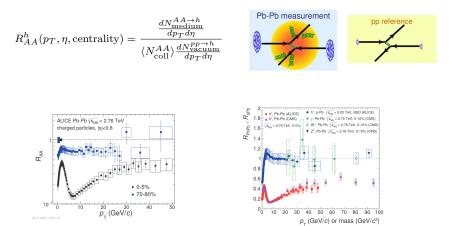
Mechanisms of the energy loss:

- elastic scatterings \rightarrow collisional energy loss (dE/dx)
- inelastic scatterings (gluon radiation) ightarrow radiative energy loss (controlled by $\hat{q})$
- * energy loss is expected to depend on parton's colour charge and mass: hierarchy in energy loss $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$

イロト イボト イヨト イヨト

Introduction - Hard Probes

Traditional measure of energy loss - nuclear modification factor:



A. Czajka (NCBJ, Warsaw) Jet quenching in glasma

イロト イボト イヨト イヨト

hard probes in (near) equilibrium QGP - very broad area, various approaches and techniques used, complex structure of jet structure and propagation

hard probes in pre-equilibium phase - relatively new idea

- * glasma
- * out-of-equilibrium system made of quasiparticles
- transport coefficients studied via Fokker-Planck equation Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018)
- solving Wong equations numerically within CGC Ruggieri, Das et al, Phys. Rev. D 98, 094024 (2018)
- HQ momentum diffusion in far-from-equilibrium overoccupied plasma Boguslavski, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)
- jet momentum broadening in pre-equilibrium glasma Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)

Motivation

- properties of the initial stage
 - * the least understood phase of the collision
 - * lack of a direct experimental access to it
 - * initial conditions for subsequent hydrodynamic evolution
 - * transition between early-time dynamics and hydrodynamics
- impact of pre-equilibrium phase on hard probes
 - * expected hierarchy of energy loss not confirmed
 - * influence of initial dynamics on hard probes ignored for a long time
- limitations, consistency and reliability of the method

expansion of glasma fields in the proper time:

- \rightarrow analytical approach to study the initial state
- \rightarrow purely classical
 - * allows for control over different approximations and sources of errors
 - * can be systematically extended
 - $\ast~$ no fluctuations of positions of nucleons \rightarrow less detailed when compared, for example, to IP-glasma

イロト 不得 トイヨト イヨト

Initial dynamics

A. Czajka (NCBJ, Warsaw) Jet quenching in glasma

・ロト ・御 ト ・ ヨト ・ ヨト

э

Nuclei before the collision

MV model - a specific realization of CGC:

- * large x partons: valence quarks, color sources for gluon fields represented by the color density ρ : $J^{\mu}(x^{-}, \vec{x}_{\perp}) = \delta^{\mu+}\rho(x^{-}, \vec{x}_{\perp})$
- * small x partons: due to large occupation numbers effectively represented by soft gluon fields $\beta^{\mu}(x)$: $F^{\mu\nu} = \frac{i}{a}[D^{\mu}, D^{\nu}]$ with $D^{\mu} = \partial^{\mu} ig\beta^{\mu}$
- st gluons are in the saturation regime controlled by the saturation scale Q_s
- * separation scale between small-x and large-x partons is fixed
- * alternatively: $\mathbf{E}(x)$ and $\mathbf{B}(x)$ fields

Yang-Mills equations: $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$

Solution: $\beta^-(x^-, \vec{x}_\perp) = 0$ $\beta^i(x^-, \vec{x}_\perp) = \theta(x^-) \frac{i}{q} U(\vec{x}_\perp) \partial^i U^{\dagger}(\vec{x}_\perp)$

 $U(\vec{x}_{\perp}) -$ Wilson line

Glasma

Glasma:

- highly energetic and anisotropic medium made of mostly gluon fields
- glasma fields $\alpha(\tau, \vec{x}_{\perp})$ and $\alpha_{\perp}^{i}(\tau, \vec{x}_{\perp})$ develop in the forward light-cone region: $\alpha^{+}(x) = x^{+}\alpha(\tau, \vec{x}_{\perp})$ $\alpha^{-}(x) = -x^{-}\alpha(\tau, \vec{x}_{\perp})$ $\alpha^{i}(x) = \alpha^{i}_{\perp}(\tau, \vec{x}_{\perp})$
- evolve in time parametrized by $\tau = \sqrt{t^2 z^2} = \sqrt{2x^+x^-}$
- are boost-independent
- gluon fields obtained as solutions to classical source-less Yang-Mills equations
- current dependence enters through boundary conditions, which connect different * light-cone sectors

 $\alpha_{\perp}^{i}(\tau = 0, \vec{x}_{\perp}) = \beta_{\perp}^{i}(\vec{x}_{\perp}) + \beta_{2}^{i}(\vec{x}_{\perp}) \qquad \alpha(\tau = 0, \vec{x}_{\perp}) = -\frac{ig}{2}[\beta_{\perp}^{i}(\vec{x}_{\perp}), \beta_{2}^{i}(\vec{x}_{\perp})]$

general solutions not known

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Expansion in the proper time

An analytical approach to solve Yang-Mills equations proposed in:

Fries, Kapusta, Li, arXiv:0604054 Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 (2015)

- glasma is a short-lived phase and decays before the system reaches equilibrium ($\tau < 1~{\rm fm/c})$
- proper time can be treated as an expansion parameter of glasma fields:

$$\alpha^i_{\perp}(\tau,\vec{x}_{\perp}) = \sum_{n=0}^{\infty} \tau^n \alpha^i_{\perp(n)}(\vec{x}_{\perp}), \qquad \alpha(\tau,\vec{x}_{\perp}) = \sum_{n=0}^{\infty} \tau^n \alpha_{(n)}(\vec{x}_{\perp})$$

- the system of coupled Yang-Mills equations can be solved recursively to any order in $\boldsymbol{\tau}$
- Oth-rder coefficients are identified with boundary conditions
- solutions are written in terms of precollision potentials
- effective dimensionless parameter is $\tilde{\tau} = \tau Q_s$

Summary of the method:

 $\rho(x^-,\vec{x}_\perp) \ \rightarrow \ \beta(x^-,\vec{x}_\perp) \ \rightarrow \ \alpha(0,\vec{x}_\perp) \ \rightarrow \ \alpha(\tau,\vec{x}_\perp) \ \rightarrow \ E(\tau,\eta,\vec{x}_\perp), \ B(\tau,\eta,\vec{x}_\perp)$

イロト イポト イヨト イヨト 三日

Correlators of gauge potentials

 colour charge distributions are not known → average over colour sources assuming a Gaussian distribution within each nucleus

$$\langle \rho_a(x^-, \vec{x}_\perp) \rho_b(y^-, \vec{y}_\perp) \rangle = g^2 \delta_{ab} \lambda(x^-, \vec{x}_\perp) \delta(x^- - y^-) \delta^2(\vec{x}_\perp - \vec{y}_\perp)$$

 $\lambda(x^-, ec{x}_\perp)$ - volume density of sources

• potentials of different nuclei are uncorrelated: $\langle \beta^i_{1a}\beta^j_{2b}\rangle=0$

Basic building block: 2-point correlator

$$\langle \beta_a^i(\vec{x}_{\perp})\beta_b^j(\vec{y}_{\perp})\rangle \ = \ \frac{2\delta_{ab}}{g^2 N_c \tilde{\Gamma}(\vec{x}_{\perp},\vec{y}_{\perp})} \ \left(\exp\left[\frac{g^4 N_c}{2} \ \tilde{\Gamma}(\vec{x}_{\perp},\vec{y}_{\perp})\right] - 1 \right) \partial_x^i \partial_y^j \tilde{\gamma}(\vec{x}_{\perp},\vec{y}_{\perp}) \$$

 $\tilde{\Gamma}$ and $\tilde{\gamma}$ - given by Bessel functions and the charge density density

$$\langle \rho_a \rho_b \rangle \rightarrow \langle \beta_a \beta_b \rangle \rightarrow \cdots \rightarrow \langle E_a E_b \rangle, \langle B_a B_b \rangle$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- Wick's theorem:

- $\bullet \ \ \left<\beta_1^i\beta_1^j\beta_2^l\beta_2^m\beta_2^k\beta_2^r\right> = \left<\beta_1^i\beta_1^j\right> \left(\left<\beta_2^l\beta_2^m\right> \left<\beta_2^k\beta_2^r\right> + \left<\beta_2^l\beta_2^k\right> \left<\beta_2^m\beta_2^r\right> + \left<\beta_2^l\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> + \left<\beta_2^l\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_1^j\beta_1^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_1^j\beta_1^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_1^j\beta_1^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_2^j\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_2^j\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_2^j\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> = \left<\beta_2^j\beta_2^r\right> \left<\beta_2^k\beta_2^r\right> \left<\beta_2^k\beta_2^r$
- correlators of odd number of gauge fields vanish

- charge density per unit transverse area:

- $\bar{\mu} = g^{-4}Q_s^2$, where Q_s is the saturation scale (uniform nuclei)
- Woods-Saxon distribution (internal structure of nuclei)

- IR regulator:

 $m\sim\Lambda_{\rm QCD}$ - chosen so that because of confinement the effect of valence sources dies off at transverse length scales larger than $1/\Lambda_{\rm QCD}$

- UV regulator:

 \mathcal{Q}_s - saturation scale

<ロ> (四) (四) (三) (三) (三) (三)

Energy-momentum tensor

Correlators of gauge fields and the proper time expansion determine the structure of the energy-momentum tensor:

$$\begin{split} T^{\mu\nu} &= 2 \mathrm{Tr} \big[F^{\mu\lambda} F_{\lambda}{}^{\nu} + \frac{1}{4} g^{\mu\nu} F^{\alpha\beta} F_{\alpha\beta} \big] \\ F_{\mu\nu} &= \frac{i}{g} [D_{\mu}, D_{\nu}] \end{split}$$

• the result is complicated and long and given in powers of au up to au^6 order

$$\mathcal{O}(T_{\text{milne}}) = \begin{pmatrix} (0, 2, 4, 6) & (1, 3, 5) & (1, 3, 5) & (1, 3, 5) \\ (1, 3, 5) & (-2, 0, 2, 4) & (0, 2, 4) & (0, 2, 4) \\ (1, 3, 5) & (0, 2, 4) & (0, 2, 4, 6) & (2, 4, 6) \\ (1, 3, 5) & (0, 2, 4) & (2, 4, 6) & (0, 2, 4, 6) \end{pmatrix}.$$

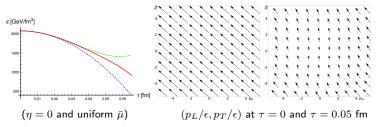
- the energy-momentum tensor is gauge-invariant, divergence-less, traceless and symmetric
- due to symmetries only 6 components are independent

イロト イポト イヨト イヨト

Energy density and pressure

$$\mathcal{E} = T^{00}$$
 $\frac{p_L}{\mathcal{E}} = \frac{T^{11}}{T^{00}}$ $\frac{p_T}{\mathcal{E}} = \frac{1}{2} \frac{(T^{22} + T^{33})}{T^{00}}$

- $T^{\mu
 u}$ was found in powers of au up to au^6 order
- various profiles of \mathcal{E} , p_T , and p_L for different geometries of the collision and different charge densities were studied

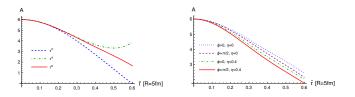


- $* ~ \mathcal{E}$, p_T (and p_L) are smooth functions in time and space
- * proper time expansion works reasonably well for times $ilde{ au} \sim 0.5$ (or $au \sim 0.05$ fm)

Anisotropy of p_L and p_T

• anisotropy of the transverse and longitudinal pressure $(A_{TL} = 6 \text{ at } \tau = 0 \text{ and } A_{TL} = 0 \text{ in equilibrated plasma})$

$$A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}$$



- $\ast\,$ approach to isotropy faster at space points perpendicular to the reaction plane than in it
- * approach to isotropy faster for larger rapidities

・ 一 マ ト ・ 日 ト ・

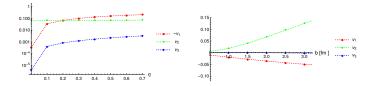
Azimuthal flow

• Fourier coefficients of the momentum azimuthal flow

$$v_n = \int_0^{2\pi} d\phi \, \cos(n\phi) \, P(\phi)$$

$$\begin{split} P(\phi) &\equiv \frac{1}{\Omega} \int d^2 \vec{x}_{\perp} \, \delta \left(\phi - \varphi(\vec{x}_{\perp}) \right) W(\vec{x}_{\perp}), \quad W \equiv \sqrt{\left(T^{0x} \right)^2 + \left(T^{0y} \right)^2}, \\ \varphi &= \cos^{-1} \left(\frac{T^{0x}}{W} \right) \end{split}$$

• Fourier coefficients v_1 , v_2 and v_3 calculated as a function of rapidity (at fixed b = 2 fm) and as a function of impact parameter (at fixed $\eta = 0.1$)



* symmetries: *n*-odd coefficients are rapidity odd and *n*-even coefficients are rapidity even (we know the reaction plane and we do not include fluctuations in the positions of participants)

< ロ > < 同 > < 三 > < 三 >

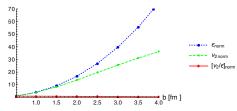
- $\ast \ v_2$ and v_3 are of the same order as experimental values
- $* |v_1|$ is bigger than expected

Eccentricity and elliptic flow coefficient

eccentricity - spatial deviations from azimuthal symmetry

$$\varepsilon_n = -\frac{\int d^2 \vec{R} |\vec{R}| \cos(n\phi) \mathcal{E}(\vec{R})}{\int d^2 \vec{R} |\vec{R}| \mathcal{E}(\vec{R})} \qquad \phi = \tan^{-1}(R_y/R_x)$$

• calculated as a function of the impact parameter at au=0.04 fm and $\eta=0$



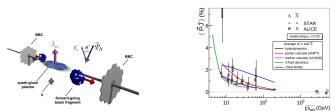
 \rightarrow correlation of eccentricity ϵ_2 and v_2 is treated as a indication of onset of hydrodynamic behaviour

| 4 同 ト 4 ヨ ト 4 ヨ ト

The expected role of angular momentum in HIC

- large angular momentum generated in non-central collisions
 - STAR Collaboration, Nature 548, 62 (2017)

Becattini and Lisa, Ann.Rev.Nucl.Part.Sci. 70 (2020) 395-423



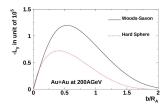
- consequences:
 - $\ast\,$ spin-orbit coupling leads to alignment of spins to the direction of the angular momentum \rightarrow polarization of hyperons and vector mesons
 - * QGP is rapidly-rotating (vortical) system
- many attempts to formulate hydrodynamics with spin

Experimental observations:

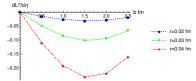
- * at RHIC energies polarization of a few percent is seen in non-central AA collisions
- * at LHC energies polarization is not observed at all

Angular momentum

 angular momentum at RHIC energies Gao et al, Phys. Rev C 77, 044902 (2008)



angular momentum of the glasma as a function of the impact parameter



- * the shape and the position of the peak similar
- $*\,$ the result at RHIC energies $\sim 10^5\,$ bigger than our results
- $\ast\,$ most of the momentum of the incoming nuclei is NOT transmitted to the glasma
- * small angular momentum of the glasma \rightarrow no polarization effect at highest collision energies

Hard probes in glasma

A. Czajka (NCBJ, Warsaw) Jet quenching in glasma

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

э

Fokker-Planck equation

Evolution equation on the distribution function of heavy quarks: Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018)

$$\left(D - \nabla_p^{\alpha} X^{\alpha\beta}(\mathbf{v}) \nabla_p^{\beta} - \nabla_p^{\alpha} Y^{\alpha}(\mathbf{v})\right) n(t, \mathbf{x}, \mathbf{p}) = 0$$

 $n(t, \mathbf{x}, \mathbf{p})$ - distribution of hard probes $D \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$

Collision terms:

$$X^{\alpha\beta}(\mathbf{v}) = \frac{1}{2N_c} \int_0^t dt' \langle F_a^{\alpha}(t, \mathbf{x}) F_a^{\beta}(t', \mathbf{x} - \mathbf{v}(t - t')) \rangle$$
$$Y^{\alpha}(\mathbf{v}) = X^{\alpha\beta} \frac{v^{\beta}}{T}$$

T - temperature of a plasma that has the same energy density as in equilibrium $\mathbf{F}(t,\mathbf{r})=g(\mathbf{E}(t,\mathbf{r})+\mathbf{v}\times\mathbf{B}(t,\mathbf{r}))$ - color Lorentz force g - constant coupling $\mathbf{E}(t,\mathbf{r}),\mathbf{B}(t,\mathbf{r})$ - chromoelectric and chromomagnetic fields $\mathbf{v}=\frac{P}{E_{\mathbf{p}}}$ - velocity of the probe:

 $\mathbf{v}\simeq 1$ - light quarks and gluons $\mathbf{v}\leq 1$ - heavy quarks

イロト イポト イヨト イヨト 三日

Energy losses

Physical meaning of the collision terms:

$$\frac{\langle \Delta p^{\alpha} \rangle}{\Delta t} = -Y^{\alpha}(\mathbf{v}) \qquad \qquad \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t} = X^{\alpha\beta}(\mathbf{v}) + X^{\beta\alpha}(\mathbf{v})$$

Energy losses are defined by:

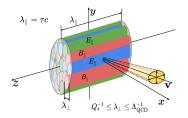
$$\frac{dE}{dx} = \frac{v^{\alpha}}{v} \frac{\langle \Delta p^{\alpha} \rangle}{\Delta t} \qquad \qquad \hat{q} = \frac{1}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^2} \Big) \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t}$$

Collisional energy loss and transverse momentum broadening

$$\begin{aligned} -\frac{dE}{dx} &= \frac{v}{T} \frac{v^{\alpha} v^{\beta}}{v^2} X^{\alpha\beta}(\mathbf{v}) \\ \hat{q} &= \frac{2}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha} v^{\beta}}{v^2} \Big) X^{\alpha\beta}(\mathbf{v}) \end{aligned}$$

Schematic picture

Hard probe traversing glasma at $\tau = 0$ ($\lambda_{\parallel}, \lambda_{\perp}$ - correlation lengths)



* experiments focus on the region of the momentum-space rapidity $y\in(-1,1)\to v_{\parallel}\in(-0.76,0.76)$

 $\ast^{`} transport$ coefficients built up during the time that the probe spends within the domain of correlated field

* this time determined by λ_{\perp} and ${\bf v}$

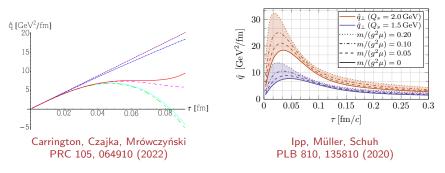
* transport coefficients saturate when the probe leaves the region of correlated fields * at higher order in $\tau \to$ calculations needed

Consistency and reliability of the approach are fixed by convergence of the proper time expansion and saturation of the results.

イロト イポト イヨト イヨト

Time dependence of \hat{q}

- \hat{q} calculated up to au^5 order
- parameters m = 0.2 GeV, $Q_s = 2$ GeV, $N_c = 3$, g = 1, $v = v_{\perp} = 1$

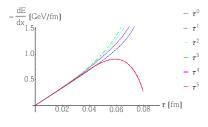


- saturation of \hat{q} observed before the au expansion breaks down,
- $\hat{q} \simeq 6 \text{ GeV}^2/\text{fm}$ maximal value

Image: A math a math

Time dependence of dE/dx

- dE/dx and \hat{q} calculated up to au^5 order
- temperature T obtained by matching:
 $$\begin{split} &\varepsilon_{\rm QGP} = \frac{\pi^2}{60} \big(4(N_c^2-1) + 7N_f N_c \big) T^4 \\ &\varepsilon_{\rm QGP} = 130.17 \big(15.9773 - 29.6759 \, \tilde{\tau}^2 + 42.6822 \, \tilde{\tau}^4 - 49.2686 \, \tilde{\tau}^6 \big) \end{split}$$



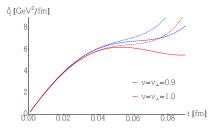
 $v=1, v_{\parallel}=v_{\perp}=1/\sqrt{2}$

• dE/dx reaches a maximal value $0.9~{\rm GeV/fm},$ no saturation \rightarrow order of magnitude estimate only

▲御▶ ▲臣▶ ▲臣▶

Velocity dependence of \hat{q}

Purely transverse motion of hard probes through the glasma ($v_{\parallel} = 0$)

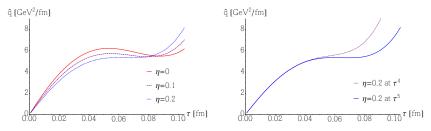


- the results at orders au^4 and au^5 agree quite well up to about $au\sim 0.07-0.08$ fm
- the probe spends less time in the region of correlated fields →reduction of the coefficient for ultra-relativistic quarks

イロト イヨト イヨト

Space-time rapidity dependence of \hat{q}

dependence on spatial rapidity $\eta \rightarrow$ dependence on the initial position of the probe in the glasma

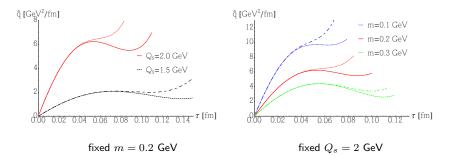


• \hat{q} at orders au^4 and au^5 agree well up to $au\simeq 0.07$ fm

q̂ is weakly dependent on *η* fo small values of *η* (CGC is expected to work best in the region of mid-spatial-rapidity region)

・ 同 ト ・ ヨ ト ・ ヨ ト

Dependence on UV and IR energy scales



 $ightarrow \hat{q}$ sensitive to the choice of m and Q_s

 \rightarrow decreasing m increases the value of \hat{q}

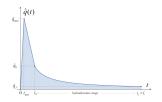
 \rightarrow decreasing Q_s decreases the maximal value of \hat{q} but extends the validity region of $\tau \rightarrow Q_s$ is smaller at smaller collision energies $\rightarrow \hat{q}$ is smaller at smaller collision energies (RHIC vs LHC collision energies)

 \rightarrow reduction in \hat{q} at $\tau=0.6$ fm for high- p_T hadron at the RHIC energies compared to LHC energies observed by the JET Collaboration K. M. Burke et al (JET Collaboration), Phys. Rev. C 90, 014909 (2014)

< ロ > < 同 > < 回 > < 回 >

Glasma impact on jet quenching

Total accumulated transverse momentum: $\Delta p_T^2 = \int_0^L dt \, \hat{q}(t)$



- non-equilibrium case: $\Delta p_T^2 \Big|^{\mathrm{non-eq}} = \frac{1}{2} \hat{q}_{\mathrm{max}} t_0 + \frac{1}{2} \hat{q}_0 (t_0 t_{\mathrm{max}})$
- equilibrium case: $\Delta p_T^2 \Big|^{eq} = 3T_0^3 t_0 \ln \frac{L}{t_0}$ where we used $\hat{q}(t) = 3T^3$ and $T = T_0 \left(\frac{t_0}{t}\right)^{1/3}$
- parameters: $\hat{q}_{\max} \approx 6 \text{ GeV}^2/\text{fm}, t_{\max} \approx 0.06 \text{ fm}, L = 10 \text{ fm}, \hat{q}_0 \approx 1.4 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}^2/\text{fm}, t_0 \approx 0.6 \text{ fm}, T_0 \approx 0.6$

$$\frac{\Delta p_T^2}{\Delta p_T^2}\Big|^{\rm eq} = 0.93$$

Non-equilibrium phase gives comparable contribution to the radiative energy loss as the equilibrium phase.

A. Czajka (NCBJ, Warsaw) Jet quenching in glasma

Summary and conclusions

- * Glasma dynamics and transport of hard probes through it studied in the proper time expansion
- * Many physical characteristics of glasma dynamics calculated
- * Impact of the glasma on hard probes quantified
- * Convergence of the proper time expansion tested
- Hydrodynamic-like behaviour in the glasma phase
 - Fourier coefficients of the azimuthal flow relatively large
 - Sizeable correlation of the eccentricity and elliptic flow coefficient
- Small angular momentum of the glasma
 - Glasma is not a rapidly rotating system, no polarization effect (in agreement with experimental observations for LHC energies)
- Significant impact of the glasma phase on transport of hard probes
 - Both \hat{q} and dE/dx are found to be relatively large
 - Our approach most reliable for probes moving transversally (this is experimentally relevant domain)

イロト イボト イヨト