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probability P of registering n particles in a fixed area 
detector set at aparticular position xd, yd
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CORSIKA shower electrons with the EPOS-LHC and Gheisha models of hadronic 
interactions. Lines for E≥1013eV show the log-Normal fits.
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Second, third and fourth normalized factorial cumulants 
for electron component in CORSIKA simulated vertical 
showers calculated for different initial particle proton 
energy with EPOS-LHC and Gheisha hadronic interaction 
models used. Thin straight lines along the thick one shows 
shower results are the power-law fits to the simulation 
results in the region 1 to 10 meters.
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KASCADE



Normalised factor cumulants for the electron component in 
simulated CORSIKA vertical showers for different initial particle 
proton energies. 
The results are presented for two local particle densities in the 
shower of 0.05 m−2 and 0.01 m−2.







Distributions of particle multiplicities recorded with a ∼6 m2 detector at different expected mean densities defined 
by the number of particles in a large (400 m2) quadrant. The lines correspond to a Poisson distribution, a binomial 
distribution and a series of negative binomial distributions (NBD) fitted to the data for each energy.



Negative Binomial Distribution (NBD)



The NBD γ parameter fitted to the simulation results for different 
primary energies as a function of the expected particle density at 
the detector position.



Ratio of the variance to the mean for a detector of size ∼6 m2 for different expected 
local shower densities and for different shower sizes. The thick solid line (with a value 
of 1 corresponds to the Poisson distribution, and the dashed line corresponds to the 
corresponding binomial distribution.



Poisson probability of detecting a small 
number of particles in the detector,
should be modified and replaced by the 
likelihood for a negative binomial distribution.

Gaussian approximation of the Poisson distribution, also works 
well for the negative binomial system, but the width of the 
corresponding Gaussian distribution will be larger than if we 
use a Poisson distribution (γ → 0) with the
same mean.

third term gives the probability of not hitting a 
particular detector at all. The simple assumption that 
it is Poisson exp(−n), when we consider that we are 
dealing with a negative binomial distribution, should 
be replaced by (1 + γ n) −1/γ.



Negative Binomial Distribution (NBD)

Nishimura–Kamata–Greisen (NKG)





Logarithmic shift of the estimated shower size as a function of the parameter γ for more distant 
detectors (δ = 24 and 48 m)



• The correlations between the particles are significant for small 
distances between them. 

• These correlations disappear when the distance between the particles 
is a few metres. They are practically negligible at and above 10 m.

• The kind of the universality of factorial cumulants is seen: their 
dependence on shower size is very weak. 

• The dependence on the mutual distance of the particles is very well 
described by the power law function.

• The exponent of this power law dependence is constant in the studied 
range of parameter variability.

Conclusions



• Multiplicity distributions are wider than predicted assuming no correlation and 
are no longer Poissonian (binomial).

• The negative binomial distribution formula describes these distributions well. 

• The relative widths of the multiplicity distributions are significantly wider than 
expected for Poisson (binomial). 

• The consideration of the change in the nature of the particle number 
distributions in the procedures for the localisation of the axis of extensive air 
showers leads to corrections in the analysis procedures, the extent of which is, 
of course, a function of the size of the shower and the geometry and size of the 
particular shower

• In the CORSIKA simulations, there are - although they are very rare - very 
significant increases in the number of particles registered by the detector. A 
simple modification of the density distribution cannot explain them. They 
require a separate description if they turn out to be important for the 
interpretation of array data from a particular extensive air shower experiment.



• Simulations were carried out using the geometry of the KASCADE array as 

an example. The result was that the optimal values of the parameter γ, 

which is taken as a constant in the localisation procedure, are on the order 
of 0.05 to 0.1, regardless of the energy of the primary particle, thatis, the 

size of the shower.

• The resulting optimal values of the χ2 parameter are significantly smaller 

than if the Poissonian (gamma = 0) nature of the density fluctuations were 

assumed.

• There is also a clear bias in the fitted shower size when a wider distribution 

of density fluctuations is taken intoaccount. The systematic change in the 
decimal log of the shower size equals approximately 0.05.

• The shower size obtained by assuming Poissonian density fluctuations is 
underestimated by up to several percent compared to that obtained for NBD 

(and γ = 0.05).

• For arrays where we have spaced the detectors further apart, the shower 

size bias can be greater, up to 20%
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