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Recipe for creating a fractional derivative

Define an operator Dα ≡ dα

dtα : f (t)→ g(t) that depends on a
continuous parameter α. When for α = n ∈ N the operator takes
the form of an expression derived for an “ordinary” derivative of
the order n, Dα can be treated as a fractional derivative.

A simple way to find the fractional derivative of a positive order
α ∈ R

take an equation that has a derivative of natural order n ,

replace n→ α, α > 0 ,

in particular, replace n! = Γ(1 + n)→ Γ(1 + α).

The fractional derivative of the order α < 0 is called a fractional
integral. The method of determining it is slightly different than the
one shown above.



The most commonly used fractional derivatives in physics

Caputo fractional derivative, 0 < α < 1

Cdαf (t)

dtα
=

1

Γ(1− α)

∫ t

0

[t − u]−αf ′(u)du, L
[

Cdαf (t)

dtα

]
(s) = sα f̂ (s)− sα−1f (0)

Riemann–Liouville fractional derivative, 0 < α < 1

RMdαf (t)

dtα
=

1

Γ(1− α)

d

dt

∫ t

0

[t − u]−1−αf (u)du, L
[

RLdαf (t)

dtα

]
(s) = sα f̂ (s)

Riesz–Weyl fractional derivative, 1 < γ < 2

dγ f (x)

dxγ
=

1

Γ(1− γ)

∫ x

−∞
[x − u]−γ

df (u)

dt
du, F

[
dγ f (x)

d |x |γ

]
(s) = −|k|γ f̃ (k)



Application of differential equations with fractional
derivatives in physics

Two main ways to get a fractional equation
1 Equation with fractional derivative has a physical basis (the

equation is derived from a physical model - an example:
anomalous diffusion)

2 Fractional equation is obtained by simply replacing the
derivative of natural order with a fractional order derivative.
One gets a ”more general” equation, but its physical
interpretation is rather unknown.



Fractional Schrödinger equation

i~
∂ψ

∂t
= C (−~2∆)α/2ψ

with Riesz spatial fractional derivative, α ∈ (0, 2), N. Laskin, Phys. Rev. E 66,

056108 (2002), X. Guo, M. Xum J. Math. Phys. 47, 082104 (2006) , application to describe
fractional dark energy: R.G. Landim, Phys. Rev. D 104, 103508 (2021) .

(i~)α
∂αψ

∂tα
= Ĥψ

with Caputo time fractional derivative, α ∈ (0, 1), M. Naber, J. Math. Phys.

45, 3339 (2004), A. Iomin, Phys. Rev. E 80, 022103 (2009) .



Other generalized physical equations with fractional derivatives (we do not consider here if there

is a physical basis for these equations)

fractional Dirac equation, S. Muslih et al., J. Phys. A 43, 055203 (2010), A. Raspini, Phys.

Scripta 64, 20 (2001)

fractional Schrödinger-Klein-Gordon equation, J. Blackledge et al., Math. Aeterna 3, 601

(2013)

fractional Maxwell equations, E.K. Jaradat et al., J. Math. Phys. 53, 033505 (2012)

fractional Liouville equation, V.E. Tarasov, Phys. Plasmas 20, 102101 (2013)

fractional Newtonian mechanics, D. Baleanu et al., Cent. Europ. J. Phys. 8, 120 (2010), W.S.

Chung, J. Comput. Appl. Math. 290, 150 (2015), G.U. Varieschi, J. Appl. Math. Phys. 6, 1247 (2018)

fractional telegrapher’s equation, J. Masoliver, Phys. Rev. E 93, 052107 (2016)

fractional oscillator equation, Y.E. Ryabov et al., Phys. Rev. B 66, 184201 (2002)

fractional Maxwell model of viscoelastic oscillator, Z.-L. Li et al., J. Vibr. Engin. Techn.

6:5, (2018)

. . . and many others



Normal and anomalous diffusion

Normal diffusion

∂P(x , t|x0)

∂t
= D

∂2P(x , t|x0)

∂x2

P(x , 0|x0) = δ(x − x0), P(±∞, t|x0) = 0

P(x , t|x0) =
1

2
√
πDt
e−

(x−x0)2

4Dt

σ2(t) ≡
∫ ∞
−∞

(x − x0)2P(x , t|x0)dx = 2Dt



Normal and anomalous diffusion

Anomalous diffusion

Anomalous diffusion is a process that is not normal diffusion.
Important functions that characterize the anomalous diffusion
process are different from those of normal diffusion.

σ2(t) ∼


tβ, β > 1, for superdiffusion,

t, for normal diffusion,
tα, 0 < α < 1, for subdiffusion,
f (log t), for slow subdiffusion



Qualitatively different diffusion processes

Superdiffusion (facilitated diffusion) occurs in media where rapid movement of
molecules over long distances is common. Examples: diffusion in turbulent
media, epidemic spread (transmission of viruses by air travel), movement of
endogeneous intracellular particles in some pathogens, of soil amebas on plastic
or glass surfaces in liquid media, mussels movement, cell migration in some
biological processes, diffusion in random velocity fields.

Normal diffusion Examples: the most known cases of diffusion, eg diffusion of
various substances in water.

Ordinary subdiffusion occurs in media in which the movement of particles is
very hindered. Examples: transport of some molecules in viscoelastic chromatin
network, porous media, living cells, transport of sugars in agarose gel, transport
of antibiotic in bacterial biofilm.

Slow subdiffusion (ultraslow diffusion) (hindered subdiffusion) Examples:
transport of water in aqueous sucrose glasses, language dynamics, diffusion in
very crowded media.



Normal and anomalous diffusion

x0 x1 

�
�(x1-x0) 

(t1-t0) 

t0 t1

〈λ2(x)〉 <∞ 〈λ2(x)〉 <∞ 〈λ2(x)〉 =∞
〈ψ(t)〉 <∞ 〈ψ(t)〉 =∞ 〈ψ(t)〉 <∞

normal diffusion ordinary subdiffusion superdiffusion

∂C
∂t

= D ∂2C
∂x2

∂C
∂t

= Dα
∂1−α
RL

∂t1−α
∂2C
∂x2

∂C
∂t

= Dβ
∂βC
∂xβ

λ(x) ∼ e−x2/2σ λ(x) ∼ e−x2/2σ λ(x) ∼ σ−β |x|−1−β

|x| � σ, 1 < β < 2

ψ(t) ∼ e−t/τ ψ(t) ∼
(
τ
t

)1+α
, t � τ, 0 < α < 1 ψ(t) ∼ e−t/τ

Slow subdiffusion

∂C(x , t)

∂t
=

∫ t

0

K(log(t′))
∂2C(x , t − t′)

∂x2

slow sub. 〈tρ〉 =∞ for ρ > 0
ordinary sub. 〈tρ〉 =∞ for ρ > α



Continuous time random walk (CTRW) model

E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965), A. Compte, Phys. Rev. E 53, 4191 (1996), R. Metzler,

J. Klafter, Phys. Rep. 339, 1 (2000), I.M. Sokolov, J. Klafter, Chaos 15, 026103 (2005), E. Barkai et al., Phys.

Rev. E 61, 132 (2000) and many others

xx0 x1 x2 xn-1 

�

� � �

� �

(x1-x0) (x2-x1) (x-xn-1) 

(t1-t0) 
t0 t1 t2 tn-1 tn

position

time

U(t-tn)(t2-t1) (tn-tn-1) 

P(x , t|x0) =

∞∑
n=0

Qn(t)Pn(x |x0)

Qn(t) is a probability that a diffusing particle takes n step in the time interval (0, t),
Pn(x |x0) is a probability density that the particle will be at x after making n jumps, x0
is the initial particle position, U is the probability that a particle does not change its
position after the last jump, U(t) = 1−

∫ t

0
ψ(t′)dt′

Qn(t) = (ψ ∗t ψ ∗t . . . ∗t ψ︸ ︷︷ ︸
n times

∗tU)(t), Pn(x |x0) = (λ ∗x λ ∗x . . . ∗x λ︸ ︷︷ ︸
n times

)(x),



P(x , t|x0) =

∞∑
n=0

Qn(t)Pn(x |x0)

Qn(t) is a probability that a diffusing particle takes n step in the time interval (0, t),
Pn(x |x0) is a probability density that the particle will be at x after making n jumps, x0
is the initial particle position, U is the probability that a particle does not change its
position after the last jump, U(t) = 1−

∫ t

0
ψ(t′)dt′

Qn(t) = (ψ ∗t ψ ∗t . . . ∗t ψ︸ ︷︷ ︸
n times

∗tU)(t), Pn(x |x0) = (λ ∗x λ ∗x . . . ∗x λ︸ ︷︷ ︸
n times

)(x),

(f ∗t h)(t) =

∫ t

0

f (t′)h(t−t′)dt′, L[(f ∗t h)(t)](s) = L[f (t)](s)L[h(t)](s) ≡ f̂ (s)ĝ(s)

Û(s) = L[1−
∫ t

0

ψ(t′)dt′] =
1− ψ̂(s)

s

(f ∗xh)(x) =

∫ ∞
−∞

f (x ′)h(x−x ′)dx ′, F [(f ∗th)(x)](k) = F [f (x)](k)F [h(x)](k) ≡ f̃ (k)g̃(k)

ˆ̃P(k, s) =
1− ψ̂(s)

s

∞∑
n=0

[ψ̂(s)λ̃(k)]n =
1− ψ̂(s)

s

1

[1− ψ̂(s)λ̃(k)]



ψ̂(s) =
∫∞

0
exp(−st)ψ(t)dt , λ̃(k) =

∫∞
−∞ exp(ikx)λ(x)dx

exp(u) =
∑∞

j=0
uj/j!,〈

t j
〉

=
∫∞

0
t jψ(t)dt,

〈
x j
〉

=
∫∞
−∞ x jλ(x)dx ,

λ̃(k) =

∞∑
j=0

(ik)j

〈
x j
〉

j!
, ψ̂(s) =

∞∑
j=0

(−s)j

〈
t j
〉

j!
.

〈t〉 = −
dψ̂(s)

ds

∣∣∣∣
s=0

,
〈
x2
〉

= −
d2λ̃(|k|)
d |k|2

∣∣∣∣
k=0



ψ̂(s) = 1− τs + τ2s2/2− . . . ,

〈t〉 = −
dψ̂(s)

ds

∣∣∣∣
s=0

= τ

λ̃(k) = 1− ρ2|k|2/2 + . . . ,〈
x2
〉

= −
d2λ̃(k)

dk2

∣∣∣∣
k=0

= ρ2

ψ̂(s) = 1− τsα + τ2s2α/2− . . . ,

〈t〉 = −
dψ̂(s)

ds

∣∣∣∣
s=0

=
τ

s1−α

∣∣∣
s=0

=∞, 0 < α < 1

λ̃(|k|) = 1− ρ2|k|γ/2 + . . . ,〈
x2
〉

= −
d2λ̃(|k|)
d |k|2

∣∣∣∣
k=0

=
ρ2γ(γ − 1)

|k|2−γ

∣∣∣∣
k=0

=∞, 1 < γ < 2



ˆ̃P(k, s) =
1− ψ̂(s)

s

1

[1− ψ̂(s)λ̃(k)]

ψ̂(s) = 1− τsα, s → 0; λ̃(|k|) = 1− ρ2|k|2/2, |k| → 0, Dα = ρ2/2τ

s ˆ̃P(k, s)− P(x , 0) = −Dαs1−α|k|2 ˆ̃P(k, s),

∂P(x , t)

∂t
= Dα

RL∂1−α

∂t1−α
∂2P(x , t)

∂x2

ψ̂(s) = 1− τs, s → 0; λ̃(|k|) = 1− ργ |k|γ/2, |k| → 0, Dγ = ργ/2τ

s ˆ̃P(k, s)− P(x , 0) = −Dα|k|γ ˆ̃P(k, s),

∂P(x , t)

∂t
= Dγ

∂γP(x , t)

∂xγ



T. Kosztołowicz, J. Phys. A: Math. Gen. 37, 10779 (2004)

L−1
[
sνe−as

β
]

(t) = fν,β(t; a) =
1

t1+ν

∞∑
j=0

1
j!Γ(−ν − βj)

(
− a

tβ

)j

a, β > 0,

The function fν,β is a special case of the H-Fox function and the
Wright function.



Subdiffusion–immobilization process

T. Kosztołowicz, Subdiffusion with particle immobilization process described by
differential equation with Riemann–Liouville type fractional time derivative, Phys. Rev.
E 108, 014132 (2023)

The diffusion–immobilization process has been observed in diffusion of chemically
reactive gases in polymer layer systems, transport of molecules in zeolites, signal
transduction in living cells, drug release processes, immobilization of enzymes affecting
catalytic reactions, oxygen diffusion trough gels, diffusion and immobilization of dyes
and lithium ions in some nanocomposite anodes. Both processes mentioned above can
occur in diffusion of antibiotic in a bacterial biofilm. One of bacteria defence
mechanisms is to disintegrate the antibiotic molecules, the process can be described
by diffusion-reaction equations. In the other one bacteria can thicken the biofilm
immobilizing antibiotic molecules. The immobilized molecules have not disappeared,
they can further interact with the environment. The process of immobilization of
diffusing molecules has been described by a diffusion equation with an additional term
describing the immobilization process.



(Sub)diffusion–reaction versus
(sub)diffusion–immobilization

Subdiffusion–reaction∫ ∞
−∞

P(x , t)dx < 1,
∫ ∞

0
ψ(t)dt = 1 (1)

ψ̂(s) =
1

1 + τsα
,

∫ ∞
0

ψ(t)dt ≡ ψ̂(0) = 1 (2)

Subdiffusion–immobilization∫ ∞
−∞

P(x , t)dx = 1,
∫ ∞

0
ψ(t)dt < 1 (3)

ψ̂(s) =
1

1 + τγ + τsα
,

∫ ∞
0

ψ(t)dt ≡ ψ̂(0) =
1

1 + τγ
(4)



The probability ps of stopping the molecule permanently is
ps = 1− ψ̂(0) = τγ/(1 + τγ), then γ = ps/[(1− ps)τ ]. The
function ψ is interpreted here as a probability density of waiting
time for a particle to jump provided that the particle has not been
permanently immobilized by this time.



sP̂(x , s)− P(x , 0) = D
s1−α

1 + γs−α
∂2P̂(x , s)

∂x2 . (5)

L−1

[
s1−α

1 + γs−α
f̂ (s)

]
(t) =

RL
Fd

1−αf (t)

dt1−α , (6)

where
RL
Fd

1−αf (t)

dt1−α =
d

dt

∫ t

0
Fα(t − t ′; γ)f (t ′)dt ′ (7)

is the Riemann–Liouville type fractional derivative with the kernel
Fα which is defined by its Laplace transform

F̂α(s; γ) =
1

γ + sα
. (8)



Calculation of the inverse transform of Eq. (8) is usually done by
power series expansion of the function when γ/sα < 1, and then
inverting the transform term by term using the formula
L−1[1/sβ](t) = tβ−1/Γ(β), β > 0. The result is the Mittag-Leffler
function. However, this procedure is valid for relatively large values
of the parameter s, which correspond to small values of time
variable. To get the inverse Laplace transform over the whole time
domain we propose to use the following method:



1 instead of F̂α Eq. (8) find the inverse transform of F̂α(s, γ)e−asµ , a, µ > 0,

2 expand F̂α in a power series of s considering both cases sα > γ and sα < γ
separately,

3 use the formula

L−1
[
sνe−asµ

]
(t) ≡ fν,µ(t; a) (9)

=
1

tν+1

∞∑
n=0

1

n!Γ(−nµ− ν)

(
−

a

tµ

)n

,

a, µ > 0,

4 calculate the limit of a→ 0+ in the obtained functions. We note that

fν,µ(t; 0+) =
1

tν+1Γ(−ν)
, (10)

and the result is independent of the parameter µ.



e−as
µ

γ + sα
=


e−as

µ∑∞
n=0(−γ)ns−(n+1)α, s > γ1/α,

e−asµ

γ

∑∞
n=0

(
− 1
γ

)n
snα, s < γ1/α,

(11)

and Eqs. (9) and (10) we obtain

Fα(t; γ) =


1

t1−αEα,α(−γtα), t < tb,

− 1
γ2t1+α Ẽα,α

(
− 1
γtα

)
, t > tb,

(12)

where Eα,β(u) =
∑∞

n=0
un

Γ(αn+β) , α, β > 0, is the two–parameter

Mittag–Leffler (ML) function, Ẽα,β(u) =
∑∞

n=0
un

Γ(−αn−β) is a
generalization of the ML function for negative parameters.
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Plot of the function Fα. The dashed vertical line shows the location of the

parameter tb = 11.5. The solid line with squares is the plot of the upper

function in Eq. (12) which describes Fα for t < tb, the solid line with circles is

the plot of the lower function in Eq. (12) which represents Fα for t > tb. In the

numerical calculations, the leading 20 terms in the series appearing in the

functions Eα,α and Ẽα,α have been included, α = 0.7, γ = 0.6, and D = 10.



P̂(x , s) =

√
γ + sα

2s
√
D

e−|x |
√
γ+sα√
D . (13)

P(x , t →∞) ≡ Pst(x) =
1
2

√
γ

D
e−
√

γ
D
|x |. (14)

σ2(t) ≈ 2D
γ

[
1− 1

γΓ(1− α)tα

]
. (15)

σ2(t)(t →∞) =
2D
γ



When sα > γ we obtain

P̂(x , s) =
1

2
√
Ds1−α/2

(
1− b1

sα/2
+

b2

sα

)
e−
|x|√
D
sα/2

, (16)

where b1 = γ|x |/2
√
D and b2 = (γ/2)(1 + |x |2γ/2

√
D). If sα < γ,

we get

P̂(x , s) =

√
γ

2s
√
D

e−
√

γ
D
|x |(1+ sα

2γ )

[
1 +

sα

2γ
− b

s2α

γ2

]
, (17)

where b =
√
γ/D|x |+ 1/8.



Eqs. (9) and (16) provide the Green’s functions in the limit of
short time

P(x , t) =
1

2
√
D

[
f−1+α/2,α/2(t; η) (18)

−b1f−1,α/2(t; η) + b2f−1−α/2,α,2(t; η)
]
,

where η = |x |/
√
D. From Eqs. (9) and (17) we get the Green’s

function in the long time limit

P(x , t) =
1
2

√
γ

D
e−
√

γ
D
|x |
[
f−1,α(t; ξ) (19)

+
1

2γ
fα−1,α(t; ξ)− b

γ2 f2α−1,α(t; ξ)
]
,

where ξ = |x |/2
√
Dγ.
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Plots of Green’s functions for times given in the legend. The plots represent the

function Eq. (16) for t = 0.1, 0.5 and Eq. (17) for t = 15, 50, 100.
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Final remarks

In equations describing “special” diffusion processes, new fractional
derivatives can be involved.

For diffusion equations with new fractional derivatives, new
methods for solving fractional differential equations often have to
be found.

The search for new fractional equations describing various
anomalous diffusion processes is still ongoing ...



Thank you for your attention




