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The phase diagram of QCD

Phase diagram of strongly interacting
matter inT and µB ⇒
Phase transitions from hadronic matter to
quark-gluon plasma:

Low µB & highT → cross-over
(lattice QCD)
High µB & lowT → 1st order
(effective models)

⇒ 1st order transition line ends at
Critical Point (CP) → 2nd order transition

At the CP: scale-invariance, universality,
collective modes ⇒
good physics signatures

QCD Phase Diagram

Quark-Gluon Plasma

hadronic matter

first order phase
transition

cross-overT

µ

c

c

T
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Detection of the QCD Critical Point (CP): Main goal of many heavy-ion collision
experiments (in particular the SPS NA61/SHINE experiment)

Look for observables tailored for the CP; Scan phase diagram by varying
energy and size of collision system.
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Critical point predictions

Predictions on the CP existence and its location are
varying and model-dependent.

[Pandav, Mallick, Mohanty, Prog.Part.Nucl.Phys. 125 (2022) 103960]

[Becattini, Manninen, Gazdzicki, Phys. Rev.C73 2006]
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Critical Observables & the Order Parameter (OP)

CP observables

Event-by-event (global) fluctuations:
Variance, skewness, kurtosis –

sensitive to experimental acceptance

Local:
density fluctuations of OP

in transverse space
(stochastic fractal)

Order parameter

Chiral condensate
σ (x ) = ⟨q̄ (x )q (x )⟩

Net baryon density
nB (x )

coupling induced critical
fluctuations*

A quantity that:
is = 0 in disordered phase (QGP)

is , 0 in ordered phase (hadrons)
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*[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]



Self-similar density fluctuations near the CP

Critical Point
Universality Class

& space dimensionality

Critical exponents
(power-law)

Correlations in
configuration space

Correlations in
momentum space

σ-field:
⟨nσ (k )nσ (k ′)⟩ ∼ |k − k ′ |−4/3,

nσ (k ) = σ2 (k )

Baryons:
⟨nB (k )nB (k ′)⟩ ∼ |k − k ′ |−5/3,

nB = net baryon density
at midrapidity

divergent correlation

length ξ → ∞,
ξ ∼ |t |−ν

determines

dictate

Fourier
transform

3D-Ising,
infinite

size
system
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Γ (r ) ∼ ⟨φ (r )φ (0) ⟩

⇒ r −p exp(−r /ξ ), r → ∞

Scale invariance

ξ → ∞ ⇒ Γ (r ) ∼ r −p

[Antoniou et al, Nucl. Phys. A 693 799–824 (2001)] [Antoniou et al, PRL 97, 032002 (2006)]



Observing power-law fluctuations through intermittency

[Csorgo, Tamas, PoS CPOD2009 (2009) 035]

Experimental observation of local, power-law distributed fluctuations of
net baryon density

⇓
Intermittency in transverse momentum space at mid-rapidity

(Critical opalescence in ion collisions)
[F.K. Diakonos, N.G. Antoniou and G. Mavromanolakis, PoS (CPOD2006) 010, Florence]

Net proton density carries the same critical fluctuations as the net baryon
density, and can be substituted for it.
[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Furthermore, antiprotons can be ignored (their multiplicity is negligible
compared to protons), and we can analyze just the proton density.
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Observing power-law fluctuations: Factorial moments

Pioneered by Białas and others, as a method to detect non-trivial dynamical
fluctuations in high energy nuclear collisions

Transverse momentum space is partitioned
into M 2 cells

Calculate second factorial moments F2 (M )
as a function of cell size ⇔ number of cells M:

F2 (M ) ≡

〈
1
M 2

M 2∑
i=1

n i (n i − 1)
〉

〈
1
M 2

M 2∑
i=1

n i

〉2
,

where ⟨. . .⟩ denotes averaging over events.

px

p
y

m   binth m   binth

n  : number of
particles in

m
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[A. Bialas and R. Peschanski, Nucl. Phys. B 273 (1986) 703-718]
[A. Bialas and R. Peschanski, Nucl. Phys. B 308 (1988) 857-867]
[J. Wosiek, Acta Phys. Polon. B 19 (1988) 863-869]
[A. Bialas and R. Hwa, Phys. Lett. B 253 (1991) 436-438]
[Z. Burda, K. Zalewski, R. Peschanski, J. Wosiek, Phys. Lett. B 314 (1993) 74-78]

px ,y range in present analysis:
−1.5 ≤ px ,y ≤ 1.5 GeV/c

M 2 ∼ 10 000



Background subtraction – the correlator ∆F2(M )
Background of non-critical pairs must be subtracted from experimental data;

Partitioning of pairs into critical/background

⟨n (n − 1)⟩ = ⟨nc (nc − 1)⟩︸          ︷︷          ︸
critical

+ ⟨nb (nb − 1)⟩︸          ︷︷          ︸
background

+ 2⟨nbnc⟩︸   ︷︷   ︸
cross term

∆F2 (M )︸    ︷︷    ︸
correlator

= F
(d )

2 (M )︸     ︷︷     ︸
data

−λ (M )2 · F (b )
2 (M )︸    ︷︷    ︸

background

−2 · λ (M )︸︷︷︸
ratio

<n>b
<n>d

· (1 − λ (M )) fbc

If λ(M ) ≲ 1 (dominant background) ⇒ cross term negligible &
F
(b )

2 (M ) ∼ F mix
2 (M ) (Critical Monte Carlo* simulations), then:

∆F2 (M ) ≃ F data
2 (M ) − F mix

2 (M )

Intermittency restored in ∆F2(M ):

∆F2 (M ) ∼
(
M 2)ϕ2 , M ≫ 1

⇒

ϕ2: intermittency index

Theoretical prediction* for ϕ2

ϕ
(p )
2,cr =

5
6 (0.833 . . .)

*[Antoniou et al, PRL 97, 032002 (2006)]
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The correlation integral C(R) as an aid to intermittency

A computationally faster alternative to lattice averaging on a fixed grid, the
correlation integral is defined as:

C (R ) = 2
⟨Nmul (Nmul − 1)⟩ev

〈∑
i ,j
i<j

Θ
(
|xi − xj | ≤ R

) 〉
ev

[P. Grassberger and I. Procaccia (1983). ”Measuring the strangeness of strange attractors”. Physica. 9D: 189–208]

[F. K. Diakonos and A. S. Kapoyannis, Eur. Phys. J. C 82, 200 (2022)]

 

Rw α 

M divisions 

Fixed Grid 

R 

Moving Circles 

F2 (M ) can be obtained from C (R ), or
vice-versa, by the relations:

C (RM ) =
⟨Nmul ⟩2

ev

⟨Nmul (Nmul − 1)⟩ev
F2 (M )
M 2

F2 (M ) = ⟨Nmul (Nmul − 1)⟩ev
⟨Nmul ⟩2

ev

M 2C (RM ),

where πR2
M

= a2.
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NA49 C+C, Si+Si, Pb+Pb @
√
sNN ≃ 17 GeV – dipions

3 sets of NA49 collision systems at 158A GeV/c (
√
sNN ≃ 17 GeV)

[T. Anticic et al, Phys. Rev. C 81, 064907 (2010); T. Anticic et al., Eur. Phys. J. C 75:587 (2015)]

Intermittent behaviour (φ (σ )2 ≃ 0.35) of dipion pairs (π+,π−) in transverse
momentum space observed in central Si+Si collisions at 158A GeV.
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[T. Anticic et al, Phys. Rev. C 81, 064907 (2010)]

No such power-law behaviour observed in central C+C and Pb+Pb collisions
at the same energy.
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NA49 C+C, Si+Si, Pb+Pb @
√
sNN ≃ 17 GeV – protons

Factorial moments of proton transverse momenta analyzed at mid-rapidity

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000

F 2
(M

)

M2

data
mixed

NA49 ’’C’’+C @ 158A GeV/c

-0.5

0

0.5

1

0 5000 10000 15000 20000

ΔF
2(

M
)

M2

data

NA49 ’’C’’+C @ 158A GeV/c

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000

F 2
(M

)

M2

data
mixed

NA49 Pb+Pb @ 158A GeV/c

-0.5

0

0.5

1

0 5000 10000 15000 20000

ΔF
2(

M
)

M2

data

NA49 Pb+Pb @ 158A GeV/c

No intermittency detected in the “C”+C, Pb+Pb datasets.
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NA49 C+C, Si+Si, Pb+Pb @
√
sNN ≃ 17 GeV – protons
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[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

F2 (M ), ∆F2 (M ) errors estimated by the bootstrap method
[W.J. Metzger, “Estimating the Uncertainties of Factorial Moments”, HEN-455 (2004).]

Fit with ∆F (e )
2 (M ; C,φ2) = 10C ·

(
M 2

M 2
0

)φ2
, for M 2 ≥ 6000 (M 2

0 ≡ 104)

Evidence for intermittency in “Si”+Si – but large statistical errors.
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NA49 C+C, Si+Si, Pb+Pb @
√
sNN ≃ 17 GeV – protons

Distribution of ϕ2 values, P (ϕ2), and confidence intervals for ϕ2 obtained
by fitting individual bootstrap samples [B. Efron, The Annals of Statistics 7,1 (1979)]

-0.5

0

0.5

1

0 5000 10000 15000 20000

ΔF
2(

M
)

M2

data
power-law fit

NA49 ’’Si’’+Si @ 158A GeV/c

φ2

N
sa
m
pl
es

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

"Si"+Si

Bootstrap distribution of φ2 values is highly asymmetric
(due to closeness of F (d )

2 (M ) to F
(m )

2 (M ) ).
Uncorrelated fits used, but errors between M are correlated!
(more on this later)
Estimated intermittency index: φ2,B = 0.96+0.38

−0.25(stat.) ± 0.16(syst.)
[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]
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The NA61/SHINE experiment

Fixed-target, high-energy collision experiment
at CERN SPS;

Reconstruction & identification of emitted
protons in an extended regime of rapidity, with
precise evaluation of their momentum vector;

Centrality of the collision measured by a
forward Projectile Spectator Detector (PSD);

Direct continuation of NA49

Search for Critical Point
signatures
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NA61/SHINE intermittency: 7Be + 9Be @
√
sNN ≃ 17 GeV

Intermittency analysis is pursued within the framework of the NA61/SHINE
experiment, inspired by the positive, if ambiguous, NA49 Si+Si result.
[T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5]

Two NA61/SHINE systems were initially examined:
7Be + 9Be and 40Ar + 45Sc @ 150A GeV/c (

√
sNN ≃ 17 GeV)
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F2 (M ) of data and mixed events overlap ⇒
Subtracted moments ∆F2 (M ) fluctuate around zero ⇒
No intermittency effect is observed in Be+Be.
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NA61/SHINE 40Ar + 45Sc @
√
sNN ≃ 17 GeV

First indication of intermittency in mid-central Ar+Sc 150A GeV/c collisions
presented at CPOD2018; In 2019, an extended event statistics set was
analysed;
A scan in centrality was performed (maximum range: 0-20% most central),
as centrality may influence the system’s freeze-out temperature;
Event statistics: ∼ 400K events per 10% centrality interval;
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Some signal indication in c.10-20% (“mid-central”), but inconclusive.
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SHINE 40Ar + 45Sc independent bin proton intermittency

No signal indicating the critical point
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[NA61/SHINE, EPJC 83 (2023) 881]

[NA61/SHINE, arXiv:2401.03445]
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STAR h± intermittency analysis

In March 2023, the STAR collaboration published intermittency results of ∆F2
of charged hadrons in 0-5% Au+Au collisions at four example energies;
[STAR collaboration, Phys.Lett.B 845 (2023)]

Plots: ∆Fq (M ) = F data
q (M ) − F mixed

q (M ) (q = 2 − 6), in double-logarithmic
scale;
STAR reported that ∆Fq (M ) increases with M 2 and saturates when M 2 is
larger than M 2 > 4000;
Interpretation of the source of this increase was unclear; no specific
theoretical prediction is given for h± critical scaling.
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SHINE Xe + La negatively charged hadrons intermittency

Intermittency analysis performed on negatively charged hadrons (h−) in
SHINE Xe + La collisions @ 150A GeV/c ; motivated by corresponding STAR
analysis; [STAR collaboration, Phys.Lett.B 845 (2023)]

Results after cumulative transform
and short-range correlation ∆pT
cut (∆pT < 100 MeV/c removed) do
not show any signal indicating the
critical point;

Could the results of STAR (reported
increase of ∆F2 with M ) also be
interpreted as due to short-range
correlations?
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Challenges in proton intermittency analysis

1 Particle species, especially protons, cannot be perfectly identified
experimentally; candidates will always contain a small percentage of
impurities;

2 Experimental momentum resolution sets a limit to how small a bin size
(large M ) we can probe;

3 A finite (small) number of usable events is available for analysis; the “infinite
statistics” behaviour of ∆F2(M ) must be extracted from these;

4 Proton multiplicity for medium-size systems is low (typically ∼ 2 − 3 protons
per event, in the window of analysis) – and the demand for high proton purity
lowers it still more;

5 M -bins are correlated – the same events are used to calculate all F2(M )!
This biases fits for the intermittency index φ2, and makes confidence
interval estimation hard.
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Particle identification (proton selection)
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Particle ID through energy loss dE /dx in the Time Projection Chambers
(TPCs);

Employ pt ot region where Bethe-Bloch bands do not overlap
(3.98 GeV/c ≤ pt ot ≤ 126 GeV/c);

Mid-rapidity region (|yCM | < 0.75) selected for present analysis.

N. Davis (IFJ PAN) Achievements and challenges in intermittency analysis. May 29, 2024 22 / 42



Momentum resolution: effect on intermittency

CMC + background +
Gaussian noise (5 MeV radius);

A 5 MeV Gaussian error in px , py

leads to ∼ 10% discrepancy in the
value of φ2.

For very large backround values
(> 99%), momentum resolution
matters little to the overall distortion.
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Intermittency analysis tools: the bootstrap

Random sampling of events, with replacement, from the
original set of events;

k bootstrap samples (k ∼ 1000) of the same number of events
as the original sample;

Each statistic (∆F2 (M ), φ2) calculated for bootstrap samples
as for the original; [B. Efron, The Annals of Statistics 7,1 (1979)]

Variance of bootstrap values estimates standard error of
statistic.

[W.J. Metzger, “Estimating the Uncertainties of Factorial Moments”, HEN-455 (2004).]
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Intermittency analysis tools: correlated fit

Possible to perform correlated fits for φ2, with M -correlation matrix estimated
via bootstrap;

Correlated fit
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Replication of events means bootstrap sets are not independent of the
original: magnitude of variance and covariance estimates can be trusted,
but central values will be biased to the original sample;
Correlated fits for φ2 are known to be unstable;
[B. Wosiek, APP B21, 1021 (1990); C. Michael, PRD49, 2616 (1994)]

The approach of independent bins greatly reduces event statistics per
M -bin. [NA61/SHINE Collaboration, Eur. Phys. J. C 83:881 (2023), arXiv:2305.07557]
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Intermittency analysis tools: Monte Carlo model scan

Avoid fitting,
use model weighting!

Build Monte Carlo models
incorporating background &
fluctuations;

Compare them against
experimental moments ∆F2(M );

Models are parametrized in critical
exponent strenght (φ2 value),
critical component (% of critical to
total protons), and possibly other
parameters (e.g. detector effects);

Ideally, a wide scan of model
parameters should be performed
against the experimental data.
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Critical Monte Carlo (CMC) algorithm for baryons
Simplified version of CMC* code:

Only protons produced;
One cluster per event, produced by
sampling random Lévy walk of
adjustable dimension dF , e.g.:
dB
F

= 1/3 ⇒ φ2 = 1 − dB
F
/2 = 5/6

Lower / upper bounds of Lévy walks
pmin,max plugged in;
Cluster center adjustable to
experimental set mean proton pT per
event;
Poissonian proton multiplicity
distribution.

Input parameters (example)

Parameter pmin (MeV) pmax (MeV) λPoisson

Value 0.1 → 1 800 → 1200 ⟨p⟩non-empty
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CMC – background simulation & detector effects

Non-critical background simulation: replace critical tracks by uncorrelated
(random) tracks, with fixed probability: Ptr ack = 1 − Pcr i t ,
where Pcr i t is the percentage of critical component;

pT distribution of background tracks plugged in to match experimental data;

yCM rapidity value generated orthogonal to pT , matching experimental
distribution;

pT , yCM , quality & acceptance cuts applied, same as in NA61/SHINE data;
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CMC scan ∆F2(M ) – examples

Results shown for CMC ∆F2(M ), with ⟨p⟩ = 2.562, corresponding to
NA61/SHINE Ar+Sc @ 150A GeV/c , cent.10-20%;
2 settings:

1 φ2 = 0.125, crit.% = 1.60%;
2 φ2 = 0.750, crit.% = 1.60%;

For each setting, ∼ 8K independent samples of ∼ 400K events are
generated; event statistics selected to match NA61/SHINE data.
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Weighting models: Goodness-of-fit function

M2

F 2(
M

) Model + bkg
Experiment

res(Mi)

}1σ C.I.

}3σ C.I.

Calculate the residuals for each bin Mi

between model & experiment:

r es (Mi ) ≡
F

exper.
2 (Mi ) − F model

2 (Mi )
1σ

,

σ ∼ uncertainties (e.g. by bootstrap);

Weight models by χ 2 metric:

χ2 =
∑
i

r es2 (Mi ) ⇒

Model Weight ∼ e−
χ2

2
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Scan parameter space, weighting
models on a grid.
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Handling bin correlations through PCA

While CMC samples (events) are independent, M -bins in a sample are not;
they are strongly correlated;

Additionally, there are ∼ 150 bins, i.e. dimensions to consider, and we have
∼ Ns = 8K independent samples – too few to probe the joint distribution;

We need to reduce the effective dimensionality and untangle correlations;

We can do this via Principal Component Analysis (PCA): center and scale
sample points in M -space, then rotate the axes to make independent linear
combinations of M -bins. Finally, keep only few significant components.
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Selecting an optimal number of PCs

We must select an optimal # of PCs; too few, and we lose information on the
moments distribution; too many, and we retain noise from the particular set of
samples;

One criterion is to pick the # of PCs that minimizes the loss in reconstructing the
original distribution from the PCs – but we have to be cautious!
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We use the ∆F2 (M ) values of all but one M -bin to predict the missing value in
one sample (“leave-one-out” predictor) using the model; then we aggregate the
score over all samples;

Scores are cross-validated in sub-samples for added confidence;

About ∼ 35 components should be kept by leave-one-out metric.
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Performing PCA on CMC & EPOS + CMC infusion data
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In order to test the performance of
PCA on experimental-like data, we
have created a synthetic set based
on EPOS Monte Carlo,
[K. Werner, F. Liu, and T. Pierog, Phys. Rev. C 74,

044902 (2006)]

adapted to NA61/SHINE detector;

We have infused (non-critical)
EPOS events with critical protons
from CMC, at a critical component
of 1.5%;

Then, we perform a “pseudo-ID” of candidate protons in CMC-infused EPOS,
and calculate proton ∆F2(M ).

Note that this set is to be treated only as an experimental data surrogate for
illustrative purposes – no physics conclusions ought to be drawn from it!
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Performing PCA on CMC & EPOS + CMC infusion data
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PCA decouples bins; χ 2 of CMC vs EPOS can be summed per PC.
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Creating exclusion plots with CMC

We use fast CMC moments via C (R) to create an exclusion plot for CMC vs
experimental/synthetic data sets:

1 Set mean proton multiplicity, # events to match our data;
2 Simulate Nsampl es ∼ 1 − 10K independent samples per model configuration;
3 Critical component runs from 0% to 2%, in 40+1 steps;
4 φ2 runs from 0.1 to 1.0, in 36+1 steps.

All in all:

150 bins × Ns samples × 41 bkg.levels × 37 φ2 values

We calculate CMC ∆F2(M ) by subtracting the mean F2(M )s of CMC with
100% bkg. from the F2(M ) with corresponding φ2 value;

Finally, we perform PCA and compare χ 2 of experimental to Monte Carlo
samples per PC dimension.

We determine that ∼ 35 principal components should be kept, based on the
quality of reconstructing the original CMC distribution from the given # PCs.
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Scan of models – the exclusion plot

Plotting the p-values of any given experimental set against a grid of model
parameters gives us an exclusion plot – a map of likely & unlikely models;
As a basic consistency check, we can produce exclusion plots for a
CMC-generated set (e.g. with φ2 = 0.825 & crit. component = 0.7%);

For EPOS + CMC infusion, only top-right corner is excluded; everything else
is ∼ equally likely – again, this MC is meant only for illustrative purposes;
CMC vs itself shows a narrow band of “favored” models including our
plug-in; but, map is insufficient to uniquely determine a parameter set.
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The role of event statistics

In the comparison of experimental sets against models, the uncertainties of
experimental F2(M ) play a crucial role; if uncertainties are large, model
behaviors overlap, and we cannot easily distinguish between models;

Furthermore, large uncertainties mean we could have easily obtained a very
different exclusion plot under the same experimental conditions;

F2(M ) uncertainties are largely controlled by event statistics (# of analysed
events): increasing statistics by a factor of 10 roughly reduces F2(M )
uncertainties by a factor of 3;

We can study the effect of event statistics on exclusion plot resolution by
comparing CMC-generated sets against CMC itself, for different event
statistics.
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The role of event statistics – 1D scan of exclusion plots

In order to evaluate the behavior of multiple samples, it is easier to focus on one
single row of the exclusion plot, roughly corresponding to critical φ2 = 5/6;
We choose φ2 = 0.825, and plot the p-values along this row of ∼ 1600 samples
(CMC simulations) of:

1 PCA F2 (M ) with crit. comp. = 0%, φ2 = 0.1 (no signal case)
2 PCA F2 (M ) with crit. comp. = 1%, φ2 = 0.825 (signal case)

The result is ∼ 1600 curves of p-value as a function of % crit. comp., and we
study their behavior (width, location of peak(s), included & excluded regions,
etc.)

We study 2 cases: “Normal” NA61/SHINE statistics (∼ 400K events), and
“×10” statistics (∼ 4M events).
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p-value example curves – normal vs ×10 stats

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
% crit. comp.

0

0.2

0.4

0.6

0.8

1

p-
va

lue

Example p-value curves, (No signal, PCA)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
% crit. comp.

0

0.2

0.4

0.6

0.8

1

p-
va

lue

Example p-value curves, (1% signal, PCA)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
% crit. comp.

0

0.2

0.4

0.6

0.8

1

p-
va

lue

Example p-value curves, ×  stats (No signal, PCA)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
% crit. comp.

0

0.2

0.4

0.6

0.8

1

p-
va

lue

Example p-value curves, ×  stats (1% signal, PCA)

N. Davis (IFJ PAN) Achievements and challenges in intermittency analysis. May 29, 2024 39 / 42

no
rm

al
st

at
s

×
10

st
at

s



Conclusions & Outlook

Proton intermittency analysis is a promising tool
for detecting the critical point of strongly interacting
matter; however, large uncertainties and bin
correlations cannot be handled by the conventional
analysis method;

We have developed new techniques able to handle
statistical and systematic uncertainties without
sacrificing event statistics;

This is achieved through building Monte Carlo
models and weighting them against data via a
scan in parameter space; at the same time, rotating
from original bins to principal components ensures
that bin correlations do not invalidate the analysis;
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Conclusions & Outlook

Intermittency analysis is statistics-hungry; with
current NA61/SHINE statistics (∼ 500K events),
we can resolve ∼ 2% crit. comp. from no signal –
rather unrealistic. We can reduce that to
∼ 1% crit. comp. with ×10 statistics
(∼ 5M events), which is within reach of the
upgraded detector & proposed lighter nuclei scan;

Detailed exploration of refined models with critical
& non-critical components is certainly needed, in
order to assess experimental data;

The merits of independent bin analysis vs PCA
remain to be seen; both methods give similar
p-values, but PCA results in much smaller absolute
∆F2 uncertainties;

Stay tuned! :-)
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Independent bin analysis with cumulative variables

M-bin correlations complicate uncertainties estimations for ∆F2(M ) & φ2;
one way around this problem is to use independent bins – a different subset
of events is used to calculate F2(M ) for each M ;

Advantage: correlations are no longer a problem;
Disadvantage: we break up statistics, and can only
calculate F2(M ) for a handful of bins.

Furthermore, instead of px and py , one can use
cumulative quantities: [Bialas, Gazdzicki, PLB 252 (1990) 483]

Qx (x ) =
∫ x

mi n
P (x )dx

/ ∫ max

mi n
P (x )dx ;

Qy (x , y ) =
∫ y

ymi n
P (x , y )dy

/
P (x )

transform any distribution into uniform one (0, 1);
remove the dependence of F2 on the shape of the
single-particle distribution;
approximately preserves ideal power-law correlation
function. [Antoniou, Diakonos, https://indico.cern.ch/event/818624/]
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SHINE 40Ar + 45Sc independent bin proton intermittency

No signal indicating the critical point
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STAR h± intermittency analysis

In March 2023, the STAR collaboration published intermittency results of ∆F2
of charged hadrons in 0-5% Au+Au collisions at four example energies;
[STAR collaboration, Phys.Lett.B 845 (2023)]

Plots: ∆Fq (M ) = F data
q (M ) − F mixed

q (M ) (q = 2 − 6), in double-logarithmic
scale;
STAR reported that ∆Fq (M ) increases with M 2 and saturates when M 2 is
larger than M 2 > 4000;
Interpretation of the source of this increase was unclear; no specific
theoretical prediction is given for h± critical scaling.
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SHINE Xe + La negatively charged hadrons intermittency

Intermittency analysis performed on negatively charged hadrons (h−) in
SHINE Xe + La collisions @ 150A GeV/c ; motivated by corresponding STAR
analysis; [STAR collaboration, Phys.Lett.B 845 (2023)]

Results after cumulative transform
and short-range correlation ∆pT
cut (∆pT < 100 MeV/c removed) do
not show any signal indicating the
critical point;

Could the results of STAR (reported
increase of ∆F2 with M ) also be
interpreted as due to short-range
correlations?
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Simulating fractal sets through random Lévy walks

In D-dimensional space, we can simulate a fractal set of dimension dF ,
D − 1 < dF < D , through a random walk with step size ∆r distribution:

P r (∆r > ∆r0) =


1, for ∆r0 < ∆rd
C ∆r0

−dF , for ∆rd ≤ ∆r0 ≤ ∆ru
0, for ∆r0 > ∆ru
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R
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= 1.96(02)
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The result is a set of fractal
correlation dimension,

C (R ) =
2

N (N − 1)
∑
i , j
i < j

Θ(R − |xi − xj | )
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CMC model scan (zoomed)
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CMC model scan (zoomed) – φ2 = 0.10
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CMC model scan (zoomed) – φ2 = 0.25
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CMC model scan (zoomed) – φ2 = 0.40
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CMC model scan (zoomed) – φ2 = 0.55

0 5 10 15 20 25
×103

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
(

)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=0.00%, =  0.550

0 5 10 15 20 25
×103

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=0.25%, =  0.550

0 5 10 15 20 25
×103

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=0.50%, =  0.550

0 5 10 15 20 25
×103

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=0.75%, =  0.550

0 5 10 15 20 25
×103

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=1.00%, =  0.550

0 5 10 15 20 25
×103

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=1.25%, =  0.550

0 5 10 15 20 25
×103

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=1.50%, =  0.550

0 5 10 15 20 25
×103

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=1.75%, =  0.550

0 5 10 15 20 25
×103

0.5

0.0

0.5

1.0

(
)

median
68% C.I.
95% C.I.
99.7% C.I.

CMC,  = 2.562, crit.=2.00%, =  0.550

N. Davis (IFJ PAN) Achievements and challenges in intermittency analysis. May 29, 2024 13 / 17



CMC model scan (zoomed) – φ2 = 0.70
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CMC model scan (zoomed) – φ2 = 0.85
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CMC model scan (zoomed) – φ2 = 1.00
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AMIAS on NA49 & NA61/SHINE data – φ2 vs Nwounded

φ2 AMIAS confidence intervals calculated for NA49 & NA61/SHINE systems
with indications of intermittency

Corresponding mean number of participating (“wounded”) nucleons Nw

estimated via geometrical Glauber model simulation
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Peripheral Ar+Sc collisions
approach Si + Si criticality
⇒ insight of how the critical
region looks as a function of
baryon density µB .

Check theoretical predictions*
for narrow critical scaling
region inT & µB
*[F. Becattini et. al.,
arXiv:1405.0710v3 [nucl-th] (2014);

N. G. Antoniou, F. K. Diakonos,

arXiv:1802.05857v1 [hep-ph] (2018)]

[N. G. Antoniou (N. Davis, A. Rybicki) et. al., Decoding the QCD critical behaviour in A + A collisions,

to appear on arXiv tomorrow, to be submitted to NPA]
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