DESCRIPTION OF THE COURSE OF STUDY

Course code		0719-2ID-F62-BM							
Name of the course in	Polish	Polish Budowa materii							
	English	Structure of matter							

1. LOCATION OF THE COURSE OF STUDY within the system of studies

1.1. Field of study	Data Engineering
1.2. Mode of study	Full-time
1.3. Level of study	First-cycle engineering studies
L.4. Profile of study* General academic	
1.5. Person/s preparing the course description	dr inż. Milena Piotrowska
1.6. Contact	milena.piotrowska@ujk.edu.pl

2. **GENERAL CHARACTERISTICS OF THE** course of study

2.1. Language of instruction	English
2.2. Prerequisites*	Knowledge of the fundamentals of mathematics and physics at the level of the courses Mathematics 1,
	Mathematics 2, and Physics 1, Physics 2, in particular:
	 basic concepts of classical mechanics and
	electromagnetism,
	• fundamentals of differential and integral calculus.

3. DETAILED CHARACTERISTICS OF THE COURSE OF STUDY

U. BEITHEL	C. DETRIBLE CHARACTERISTICS OF THE COCKSE OF STODE						
3.1. Form of classes		Lecture (30 h), conversatory (30 h), project (15 h)					
3.2. Place of classes		Classes conducted in a teaching room of the Jan Kochanowski					
		University					
3.3. Form of assessr	m of assessment Graded credit.						
3.4. Teaching metho	ods	Informative lecture with elements of multimedia presentation and discussion, problem-based conversatory classes (problem solving and case analysis), individual project including elements of teamwork and independent data analysis.					
3.5. Bibliography	Required reading	D. Halliday, R. Resnick, J. Walker, <i>Fundamentals of Physics</i> , Wiley, Vols. 1–5, New York, 2005/2006.					
	Further reading R. P. Feynman, Six Easy Pieces: Essentials of Physics Explained by Its Most Brilliant Teacher, Basic Books, 2011. P. W. Atkins, Physical Chemistry, Oxford University Press.						

4. OBJECTIVES, SYLLABUS CONTENT AND INTENDED LEARNING OUTCOMES

4.1. Course objectives (including form of classes)

Lecture:

- C1. To provide knowledge about the hierarchical structure of matter from elementary particles, through atoms and molecules, to condensed matter.
- C2. To familiarize students with the basic concepts and laws of modern physics describing the structure of matter, including elements of quantum mechanics.
- C3. To present methods of studying matter and the importance of micro-scale phenomena for modern technologies and engineering sciences.

Conversatory:

- C1. To develop skills in quantitative description and analysis of physical phenomena related to the structure of matter.
- C2. To improve skills in solving numerical and problem-based tasks based on the laws of atomic, nuclear, and solid-state physics.
- C3. To develop the ability to interpret the results of calculations and physical data and relate them to theory.

Project:

C1. To acquire skills in preparing and presenting a simple project related to the structure of matter or the analysis

of experimental data.

- C2. To develop the ability to work independently or in a team on a physical problem of analytical or conceptual nature
- C3. To develop competences in presenting and interpreting results in the form of a report or presentation.

4.2. Detailed syllabus (including form of classes)

Lecture:

- 1. Hierarchical structure of matter
 - Levels of organization of matter: elementary particles, nuclei, atoms, molecules.
 - Overview of methods of studying matter (microscopy, spectroscopy, accelerators).
- 2. Elementary particles and atomic nuclei
 - Introduction to the Standard Model particles and interactions.
 - Structure of the nucleus, binding energy, radioactivity and nuclear reactions.
 - Applications of radioactivity (energy production, medicine, dating).
- 3. Atoms and quantum phenomena
 - Wave-particle duality, uncertainty principle.
 - Bohr model, introduction to quantum mechanics: wave function, Schrödinger equation.
 - Atomic spectra and their interpretation.
- 4. Molecules and bonding
 - Ionic, covalent and van der Waals bonds.
 - Rotational and vibrational spectra (conceptually).
 - Influence of bonding on macroscopic properties of materials.
- 5. Condensed matter
 - Crystal lattices and basics of band theory.
 - Metals, semiconductors, insulators conductivity and applications.
 - Matter under extreme conditions: superconductivity, plasma.

Conversatory:

- 1. Hierarchical structure of matter orders of magnitude and units
 - Conversion of binding energy between different units (eV, J, MeV).
 - Estimation of the sizes of particles, atoms and atomic nuclei.
 - Calculation of nuclear binding energy based on isotope mass data.
- 2. Elementary particles and atomic nuclei
 - Exercises on radioactivity: half-life, sample activity, decay equations.
 - Energy balance in nuclear reactions (fission, fusion).
 - Nucleon binding energy, mass defect.
 - Example calculations related to radiation detection (e.g. energy range of alpha particles, absorption coefficient).
- 3. Quantum phenomena and atomic structure
 - Application of Bohr's formula for calculating energy and wavelength for the hydrogen atom.
 - Calculations related to the photoelectric and Compton effects.
 - Example exercises involving de Broglie waves: wavelength of the electron and proton.
 - Calculations of energy differences between atomic levels, interpretation of line spectra.
- 4. Bonding and molecules
 - Bond energy and comparison of stability between different types of bonds.
 - Harmonic oscillator model for molecular vibrations (simple approximations).
 - Calculations of energy differences between rotational and vibrational levels.
 - Application of the model to the interpretation of molecular spectra.
- Condensed matter
 - Calculation of electron energy in a simple free-electron model.
 - Estimation of electrical conductivity and temperature dependence.
 - Exercises involving the calculation of carrier concentration in doped semiconductors.
 - Equations describing quantum effects in semiconductors (conceptual level).

Project:

A project consisting in the preparation and analysis of data describing the structure and properties of matter using IT tools and data analysis methods.

Example topics: analysis of material data, prediction of physical properties, visualization of relationships between atomic features and macroscopic properties.

4.3 Intended learning outcomes

Code	A student, who passed the course	Relation to learning outcomes
	within the scope of KNOWLEDGE :	1
W01	Knows and understands the hierarchical structure of matter — from elementary particles to condensed matter.	ID1A_W03 ID1A_W04
W02	Knows the basic physical laws and models describing the structure of the atom, the nucleus, and quantum phenomena.	ID1A_W03 ID1A_W04
W03	Understands the relationships between the structure of matter and its physical properties and technical applications.	ID1A_W03 ID1A_W06
	within the scope of ABILITIES:	
U01	Can solve basic numerical problems in the field of atomic, nuclear, and solid-state physics.	ID1A_U01 ID1A_U02 ID1A_U05
U02	Can analyse and interpret physical data and draw conclusions based on calculations or observations.	ID1A_U02 ID1A_U05 ID1A_U06
U03	Can prepare a simple project or study including the analysis of a physical phenomenon or data concerning the structure of matter.	ID1A_U03 ID1A_U11 ID1A_U14
	within the scope of SOCIAL COMPETENCE :	•
K01	Can cooperate within a team while carrying out a project and present the results of work in written and oral form.	ID1A_K01 ID1A_K03 ID1A_K04

		Method of assessment (+/-)																			
Teaching outcomes	Exam oral/writ- ten*			Colloquium*		Raport*			Effort in class*			Self-study*			Group work*			Others* e.g. standardized test used in e-learning			
(code)		Form of classes			Form of classes		·			Form of classes					Form of classes		Form of classes			Form of classes	
	L	С	Р	L	С	Р	L	С	Р	L	С	Р	L	С	Р	L	С	Р	L	С	Р
W01				+	+						+										
W02		!		+	+						+									!	
W03				+	+						+										
U01				+	+						+										
U02		i !		+	+				+		+									i ! !	
U03		i							+					 	+			+			
K01						<u> </u>			+			:			+			+		<u> </u>	

^{*}delete as appropriate

4.5. Crite	ria of as	ssessment of the intended learning outcomes						
Form of classes	Grade	Criterion of assessment						
	3	achievement of <50 - 60) % of the assessment requirements						
(T) e	3,5	schievement of <60 -70) % of the assessment requirements						
ecture	4	achievement of < 70 - 80) % of the assessment requirements						
ect	4,5	achievement of <80 - 90) % of the assessment requirements						
	5	achievement of < 90 -100> % of the assessment requirements						
, (C)	3	achievement of <50 - 60) % of the assessment requirements						
ory	3,5	achievement of <60 -70) % of the assessment requirements						
Conversatory	4	achievement of < 70 - 80) % of the assessment requirements						
Mei	4,5	achievement of <80 - 90) % of the assessment requirements						
Con	5	achievement of <90 -100> % of the assessment requirements						
	3	achievement of < 50 - 60) % of the assessment requirements						

	3,5	achievement of <60 -70) % of the assessment requirements					
oject (P)	4	achievement of <70 - 80) % of the assessment requirements					
Proj	4,5	achievement of <80 - 90) % of the assessment requirements					
_	5	achievement of <90 -100> % of the assessment requirements					

5. BALANCE OF ECTS CREDITS - STUDENT'S WORK INPUT

	Student	's workload
Category	Full-time studies	Extramural studies
NUMBER OF HOURS WITH THE DIRECT PARTICIPATION OF THE TEACHER /CONTACT HOURS/	75	
Participation in lectures	30	
Participation in conversatory classes	30	
project work	15	
INDEPENDENT WORK OF THE STUDENT/NON-CONTACT HOURS/	50	
Preparation for the conversatory classes	20	
Preparation of the project report	10	
Preparation for the lecture colloquium	10	
Preparation for the conversatory colloquium	10	
TOTAL NUMBER OF HOURS	125	
ECTS credits for the course of study	5	

^{*}delete as appropriate

Accepted for execution (date and legible signatures of the teachers running the course in the given academic year)